PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 50 | 2 |

Tytuł artykułu

Coenzyme Q releases the inhibitory effect of free fatty acids on mitochondrial glycerophosphate dehydrogenase

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Data presented in this paper show that the size of the endogenous coenzyme Q (CoQ) pool is not a limiting factor in the activation of mitochondrial glyceropho- sphate-dependent respiration by exogenous CoQ3, since successive additions of succinate and NADH to brown adipose tissue mitochondria further increase the rate of oxygen uptake. Because the inhibition of glycerophosphate-dependent respiration by oleate was eliminated by added CoQ3, our data indicate that the activating effect of CoQ3 is related to the release of the inhibitory effect of endogenous free fatty acids (FFA). Both the inhibitory effect of FFA and the activating effect of CoQ3 could be demonstrated only for glycerophosphate-dependent respiration, while succinate- or NADH-dependent respiration was not affected. The presented data suggest differ­ences between mitochondrial glycerophosphate dehydrogenase and succinate or NADH dehydrogenases in the transfer of reducing equivalents to the CoQ pool.

Wydawca

-

Rocznik

Tom

50

Numer

2

Opis fizyczny

p.405-413,fig.

Twórcy

autor
  • Czech Academy of Sciences, Prague, Czech Republic
autor
autor
autor
autor

Bibliografia

  • Amler E, Rauchova H, Svobodova J, Drahota Z. (1986) Regulation of glycerol-3-phosphate oxidation in mitochondria by changes in membrane viscosity. FEBSLett.; 206: 1-3.
  • Amler E, Jasinska R, Drahota Z, Zborowski J. (1990) Membrane lateral pressure as a modulator of glycerol-3-phosphate dehydrogenase. FEBS Lett.; 271: 165-8.
  • Bolter CJ, Chefurka W. (1990) Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch Biochem Biophys.; 278: 65-72.
  • Brown LJ, Koza RA, Marshall L, Kozak LP, Mac Donad MJ. (2002) Lethal hypoglycemic ketosis and glyceroluria in mice lacking both the mitochondrial and the cytosolic glycerol phosphate dehydrogenase. J Biol Chem.; 277: 32899-904.
  • Bucher T, Klingenberg M. (1958) Wege des Wasserstoffs in der lebendigen Organisation. Angew Chem.; 70: 552-70.
  • Bukowiecki LJ, Lindberg O. (1974) Control of sn-glycerol 3-phosphate dehydrogenase in brown adipose tissue mitochondria by calcium and acyl-CoA. Biochim Biophys Acta. ; 348: 115-25.
  • Bulychev A, Kramer R, Drahota Z, Lindberg O. (1972) Role of a specific endogenous fatty acid fraction on the coupling- uncoupling mechanism of oxidative phosphorylation of brown adipose tissue. Exp Cell Res.; 72: 169-87.
  • Cottingham IR, Ragan CI. (1980a) Purification and properties of L-3-glycerophosphate dehydrogenase from pig brain mitochondria. Biochem J.; 192: 9-18.
  • Cottingham IR, Ragan CI. (1980b) The reconstitution of L-3-glycerophosphate cytochrome c oxidoreductase from L-3- glycerophosphate dehydrogenase ubiquinone-10 and ubiquinol cytochrom c oxidoreductase. Biochem J.; 192: 19-31.
  • Drahota Z, Chowdhury SKR, Floryk D, Mracek T, Wilhelm J, Rauchova H, Lenaz G, Houstek J. (2002) Glycerophosphate- dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J BioenergBiomembr.; 34: 105-13.
  • Echtay KS, Winkler E, Frischmuth K, Klingenberg M. (2000) Coenzyme Q is an obligatory factor for uncoupling protein function. Nature.; 408: 609-13.
  • Echtay KS, Winkler E, Frischmuth K, Klingenberg M. (2001) Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci US A.; 98: 1416-21.
  • Estabrook RW, Sacktor B. (1958) Glycerophosphate oxidase in flight muscle mitochondria. J Biol Chem.; 233: 1014-19.
  • Gnaiger E, Steinlechner-Maran R, Mendez G, Eberl T, Margreiter R. (1995) Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr.; 27: 583-96.
  • Hittelman KJ, Lindberg O, Cannon B. (1969) Oxidative phosphorylation and compartmentation of fatty acid metabolism in brown fat mitochondria. Eur J Biochem.; 11: 183-92.
  • Houstek J, Drahota, Z. (1975) Regulation of glycerol-3-phosphate oxidase of rat brown adipose tissue mitochondria by long chain free fatty acids. Mol CellBiochem.; 7: 45-50.
  • Houstek J, Cannon B, Lindberg O. (1975) Glycerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown adipose tissue. Eur J Biochem.; 54: 11-8.
  • Ishihara H, Nakazaki M, Kanegae Y, Inukai K, Asano T, Katagiri H, Jazaki Y, Saito I, Oka Y. (1996) Effect of mitochondrial and/or cytosolic glycerol 3-phosphate dehydrogenase overexpression on glucose-stimulated insulin secretion from MIN6 and HIT cells Diabetes.; 45: 1238-44.
  • Lardy H, Partridge B, Kneer N, Wei Y. (1995) Ergosteroids: induction of thermogenic enzymes in liver of rats treated with steroids derived form dehydroepiandrosterone. Proc Natl Acad Sci US A.; 92: 6617-9.
  • Lardy H, Su Ch-Y, Kneer N, Weilgus S. (1989) Dehydroepiandrosterone induces enzymes that permit thermogenesis and decrease metabolic effifiency. In; Hormones, Thermogenesis and Obesity. Lardy H, Stratman F, eds, pp 415-26. Elsevier.
  • Lenaz G. (2001) A critical appraisal of the mitochondrial coenzyme Q pool. FEBSLett.; 509: 151-5.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall LJ. (1951) Protein measurement with Folin phenol reagent. J Biol Chem.; 143: 265-75.
  • MacDonald MJ, Brown LJ. (1996) Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. Arch Biochem Biophys.; 326: 79-84.
  • MacDonald MJ, Efendic S, Ostenson CG. (1996) Normalization by insulin treatment of low mitochondrial glycerol phosphate dehydrogenase and pyruvate carboxylase in pancreatic islets of the GK rat. Diabetes.; 45: 886-90.
  • Nalecz MJ, Zborowski J, Famulski KS, Wojtczak L. (1980) Effect of phospholipid composition on the surface potential of liposomes and the activity of enzymes incorporated into liposomes. Eur J Biochem.; 112: 75-80.
  • Olivera AA, Meigs RA. (1975) Mitochondria from human term placenta. II. Characterization of respiratory pathways and coupling mechanisms. Biochim Biophys Acta.; 376: 436-45.
  • Rauchova H, Drahota Z. (1984) Inhibition of glycerol-3 phosphate oxidation by free fatty acids. Int J Biochem.; 16: 243-5.
  • Rauchova H, Battino M, Fato R, Lenaz G, Drahota Z. (1992) Coenzyme Q pool function in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria. JBioenergBiomembr.; 24: 235-41.
  • Rauchova H, Beleznai Z, Drahota Z. (1993) Dual role of fatty acids regulation of mitochondrial L-glycerol phosphate dehydrogenase. Biochem Mol Biol Int.; 30: 139-46.
  • Rauchova H, Kalous M, Drahota Z. (1993) The effect of phospholipase A2 on mitochondrial glycerol-3-phosphate oxidation. Physiol Res.; 42: 319-22.
  • Rauchova H, Fato R, Drahota Z, Lenaz G. (1997) Steady-state kinetic of reduction of coenzyme Q analogs by glycerol-3- phosphate dehydrogenase in brown adipose tissue mitochondria. Arch Biochem Biophys.; 344: 235-41.
  • Schagger H, Pfeiffer K. (2001) The ratio of oxidative phosphorylation complexes I-IV in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem.; 276: 37861-7.
  • Senner A, Lieselote H, Malaisse WJ. (1996) FAD-linked glycerophosphate dehydrogenase deficiency in pancreatic islets of mice with hereditary diabetes. FEBS Lett.; 316: 224-7.
  • Scholz TD, TenEyck CJ, Schulte BC. (2000) Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria. J Mol Cell Cardiol.; 32: 1-10.
  • Swierczynski J, Scislowski P, Alexandrowicz Z. (1976) High activity of glycerophosphate oxidation by human placenta mitochondria. Biochim Biophys Acta.; 429: 46-54.
  • Weitzel JM, Kutz S, Radtke Ch, Grott S, Seitz HJ. (2001) Hormonal regulation of multiple promotrs of the rat mitochondrial glycerol-3-phosphate dehydrogenase gene. Eur J Biochem.; 268: 4095-103.
  • Wojtczak L, Nalecz M. (1979) Surface charge of biological membranes as a possible regulator of membrane-bound enzymes. Eur J Biochem.; 94: 99-107.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3653539e-ef4e-4b72-bf8c-146fea5fdd4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.