Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 48 | 2 |
Tytuł artykułu

Spatial variability of recent sedimentation rates in the Eastern Gotland Basin (Baltic Sea)

Treść / Zawartość
Warianty tytułu
Języki publikacji
In order to study recent sedimentation rates in the Eastern Gotland Basin, 52 short sediment cores collected from the deepest part (<150 m)of the Basin in 2003 were investigated. The upper parts of all the cores were distinctly laminated and dark in colour, followed by a homogeneous, greyish lower part. The thickness of the laminated sequences varied from 17 to 300 mm. 210Pb dating analyses of selected cores revealed that the change from non-laminated to laminated sediments happened about 100 years ago, indicating a shift from predominantly oxic bottom water conditions to anoxic conditions. Used as a time marker, this shift in the sediment texture enabled sediment accumulation rates to be estimated for all sediment cores. The observed mean linear sedimentation rate for the whole basin was 0.93 ± 0.67 mm yr−1. The respective bulk sediment accumulation rates ranged from 10.5 to 527 g m−2 yr−1 with an average of 129 ± 112 g m−2 yr−1, indicating a high spatial variability of sedimentation rates within the basin. This agrees very well with the long-term sedimentation pattern since the Litorina transgression. The observed pattern clearly reflects the hydrographic conditions at the seafloor as studied by modelled near-bottom current velocities.
Opis fizyczny
  • Leibniz Institute for Baltic Sea Research Warnemunde [IOW], Seestrasse 15, D-18119 Warnemunde, Germany
  • Appleby P.G., 2001, Chronostratigraphic techniques in recent sediments, [in:] Tracking environmental change using lake sediments, Vol. 1, Basin analysis, coring, and chronological techniques, W.M. Last & J.P. Smol (eds.) , Kluwer Acad., 171–203.
  • Barnett P.R.O., Watson J., Connelly D., 1984, A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments, Oceanol. Acta, 7 (4), 399–408.
  • Bergström S., Carlsson B., 1993, Hydrology of the Baltic basin – Inflowof fresh water from rivers and land for the period 1950–1990, SMHI – Swedish Meteorol. Hydrol. Inst. Rep. Hydrol., 7, 1–21.
  • BHCD, n.d. Baltex Hydrol. Data Center, Swedish Meteorol. Hydrol. Inst., [].
  • Bonacker P., 1996, Massenbilanz holoz¨aner Ostseesedimente, Instit. Ostseeforschung, Warnem¨unde, 25 pp., (unpublished report).
  • Brügmann L., 1988, Some peculiarities of the trace metal distribution in Baltic waters and sediments, Mar. Chem., 23 (3–4), 425–440.
  • Brügmann L., Lange D., 1990, Metal distribution in sediments of the Baltic Sea, Limnologica, 20, 15–28.
  • Christiansen C., Edelvang K., Emeis K.-C., Graf G., Jahmlich S., Kozuch J., Laima M. J. C., Leipe T., Loffler A., Lund-Hansen L. C., Miltner A., Pazdro K., Pempkowiak J., Shimmield G., Shimmield T., Smith J., Witt G., 2002, Material transport from the nearshore to the basinal environment in the southern Baltic Sea. 1. Processes and mass estimates, J. Marine Syst.35 (3)–(4), 133–150.
  • Christiansen C., Emelyanov E., 1995, Nutrients and organic matter in southern Kattegat-western Baltic Sea sediments – effects of resuspension, Dan. J. Geogr., 95, 19–27.
  • Christiansen C., Kunzendorf H., 1998, Datings and sedimentation rate estimations during GOBEX. A summary, Meereswiss. Ber., 34, 55–65.
  • Christiansen C. et al., 2002, Temporal and spatial sedimentation rate variabilities in the Eastern Gotland Basin, Boreas, 31, 65–74.
  • Cofino W. P., Wells D. E., 1994, Design and evaluation of the QUASIMEME interlaboratory performance studies: a test case for robust statistics, Mar. Pollut. Bull., 29 (4)–(5), 149–158.
  • Conley D. J., Humborg C., Rahm L., Savchuk O.P., Wulff F., 2002, Hypoxia in the Baltic Sea and basin – scale changes in phosphorus, Environ. Sci. Technol., 36 (24), 5315–5320.
  • Deutsch C.V., Journel A.G., 1992, GSLIB – Geostatistical software library and user’s guide, Oxford Univ. Press, New York, 340 pp.
  • Diaz R. J., Rosenberg R., 1995, Marine benthic hypoxia: A reviewof its ecological effects and the behavioural responses of benthic macrofauna, Oceanogr. Mar. Biol. Ann. Rev., 33, 245–303.
  • Eckhell J., Jonsson P., Meilli M., Carman R., 2000, Storm influence on the accumulation and lamination of sediments in the deep areas of the northwestern Baltic Proper, Ambio, 29 (4)–(5), 238–245.
  • Emeis K.-C., Struck U., 1998, Gotland Basin Experiment (GOBEX): Status report on investigation concerning benthic processes, sediment formation and accumulation, Meereswiss. Ber., 34, 77–83.
  • Emeis K.-C. Struck U., Leipe T., Pollehne F., Kunzendorf H., Christiansen C., 2000, Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years–relevance to P regeneration rates and the phosphorus cycle, Mar. Geol., 167 (1–2), 43–59.
  • Emelyanov E., Neumann G., Lemke W., Kramarska R., Uścinowicz S., 1994, Bottom sediments of the western Baltic 1 : 500 000, Head Dept. Navigation and Oceanogr., Russian Fed. Min. Defense, St. Petersburg. Golden S., 2002, Surfer, Golden Software Inc., Colorado, 432 pp.
  • Graf G., 2000, Tiere als Ingenieure am Meeresboden, Bodden, 10, 93–97.
  • Griffies S.M., Pacanowski R.C., Schmidt M., Balaji V., 2001, Tracer conservation with an explicit free surface method for z-Coordinate Ocean Models, Mon. Weather Rev., 129 (5), 1081–1098.
  • Hagen E., Feistel R., 2001, Spreading of Baltic deep water: a case study for the winter 1997–1998, [in:] The hydrographic-hydrochemical state of the western and central Baltic Sea in 1999/2000 and during the 1990s, Meereswiss. Ber., 45, 99–133.
  • Hagen E., Feistel R., 2004, Observations of low-frequency current fluctuations in deep water of the Eastern Gotland Basin/Baltic Sea, J. Geophys. Res., 109 (C3), 1–15.
  • Hille S., 2005, Newa spects on sediment accumulation and reflux of nutrients in the Eastern Gotland Basin (Baltic Sea) and its impact on nutrient cycling, Ph.D. thesis, Rostock Univ., 119 pp.
  • Hille S., Nausch G., Leipe T., 2005, Sedimentary deposition and reflux of phosphorus (P) in the Eastern Gotland Basin and their coupling with the P concentrations in the water column, Oceanologia, 47 (4), 663–679.
  • Ignatius H., Axberg S., Niemest¨o L., Winterhalter, B., 1981, Quaternary geology of the Baltic Sea, [in:] The Baltic Sea, A. Voipio (ed.), Elsevier, New York, 54–105.
  • Ignatius H., Niemisto L., Voipio A., 1971, Variations of redox conditions in the recent sediments of the Gotland deep, Geologi, 23 (3), 43–46.
  • Jonsson P., Carman R., 1994, Changes in deposition of organic matter and nutrients, Mar. Pollut. Bull., 28 (7), 417–426.
  • Jonsson P., Carman R., Wulff F., 1990, Laminated sediments in the Baltic – A tool for evaluating nutrient mass balances, Ambio, 19 (3), 152–158.
  • Kunzendorf H., Christiansen C., 1998, Estimation of recent sedimentation histories in the Gotland Basin using cores from the GOBEX study, Sver. Geol. Unders., Ser. Ca, 86, 111–116.
  • Kunzendorf H., Emeis K.-C., Christiansen C., 1998, Sedimentation in the Central Baltic Sea as viewed by non-Destructive Pb-210-dating, Dan. J. Geogr., 98, 1–9.
  • Laine A.O., 2003, Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability, Estuar. Coast. Shelf Sci., 57 (1), 87–97.
  • Leipe T., Gingele F.X., 2003, The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material, Baltica, 16, 31–37.
  • Melvasalo T., Pawlak J., Grasshoff K., Thorell L., Tsiban A., 1981, Assessment of the effect of pollution on the natural resources of the Baltic Sea, Baltic Sea Environ. Publ. No 5B, 426 pp.
  • Mikulski Z., 1982, River inflowt o the Baltic Sea (1921–1975), PAS, Polish Nat. Comm. IHP, Faculty Geogr. Reg. Stud., Warsaw Univ.
  • Neumann T., Christiansen C., Clasen S., Emeis K.-C., Kunzendorf H., 1997, Geochemical records of salt-water inflows into the deep basins of the Baltic Sea, Cont. Shelf Res., 17 (1), 95–115.
  • Niemistö L., Voipio A., 1974, Studies on the recent sediments in the Gotland Deep, Merentutkimuslait. Julk., 238, 17–32.
  • Niemistö L., Voipio A., 1981, Notes on the sediment studies in the Finnish pollution research in the Baltic Sea, Rapp.-v. Reun. Cons. Int. Explor. Mer., 181, 87–92.
  • Pacanowski R.C., Griffies S.M., 2000, MOM 3.0 Manual, Tech. Rep. Geophys. Fluid Dyn. Lab., Princeton, USA.
  • Perttilä M., Brügmann L., 1992, Reviewof contaminants in Baltic sediments, ICES Coop. Res. Rep. No 180, 135 pp.
  • Repecka M. et al., 1998, Bottom sediment map of the Central Baltic Sea. Scale 1:500000, LGT Ser. Geol. Maps/ SGU Ser. Ba No 5, Vilnius-Uppsala.
  • Rühling A, Tyler G., 2001, Changes in atmospheric deposition rates of heavy metals in Sweden. A summary of nationwide Swedish surveys in 1968/70–1995. Water, air, & soil pollution, Focus, 1 (3–4), 311–323.
  • Sanford L.P., 1994, Wave-forced resuspension of upper Chesapeake Bay muds, Estuaries, 7(1B), 148–165.
  • Sanford L.P., Panageotou W., Halka J.P., 1991, Tidal resuspension of sediments in northern Chesapeake Bay, Mar. Geol., 97 (1–2), 87–103.
  • Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea – 2nd edn (abstract vol.), [in:] Baltic Sea Science Congress 2001: past, present and future – a joint venture, Stockholm Mar. Res. Centre, Stockholm Univ., 298 pp.
  • Schinke H., MatthausW., 1998, On the causes of major Baltic inflows – an analysis of long time-series, Cont. Shelf Res., 18 (1), 67–97.
  • Senarath A., Arnold G., Palmer A. S., Tillman R.W., Tuohy M.P., 2001, Use of geostatistics in soil mapping for precision agricultural management, [in:] Precision tools for improving land management. Occasional Rep. No 14, L.D. Curri & P. Loganathan (eds.), Fertiliser and Lime Res. Centre, Massey Univ., Palmerston North, 161–171.
  • Suess E., 1978, Distribution between natural and anthropogenic material in sediments, [in:] Biogeochemistry of estuarine sediments, E.D. Goldberg (ed.) , UNESCO Publ., Paris, 224–237.
  • Suess E. and Erlenkeuser H., 1975, History of metal pollution and carbon input in Baltic Sea sediments, Meyniana, 27, 63–75.
  • Swanson R. L., Sindermann C. J., Han G., 1979, Oxygen depletion and the future: an evaluation, [in:] Oxygen depletion and associated benthic mortalities in New York Bight, R. L. Swanson & C. J. Sindermann (eds.), 1976. NOAA Prof. Pap. No 11, 1–345.
  • Tyson R.V., Pearson T.H., 1991, Modern and ancient continental shelf anoxia: an overview, [in:] Modern and ancient continental shelf anoxia, R.V. Tyson & T.H. Pearson (eds.), Geol. Soc. Spec. Publ., Blackwell, Oxford, 1–24.
  • Unverzagt S., 2001, Raumliche und zeitliche Ver¨anderungen der Gebiete mit Schwefel-wasserstoff im Tiefenwasser der Ostsee, Ph. D. thesis, Greifswald Univ., 123 pp.
  • von Storch H., Zorita E., Jones J. M., Dimitriev Y., Gonzales-Rouco F., Tett S.F.B., 2004, Reconstructing past climate from Noisy Data Science, 306 (5696), 679–682.
  • Werner F., 2002, Bioturbation structures in marine sediments of Kiel Bay (Western Baltic), Meyniana, 54, 41–72.
  • Winterhalter B., 1992, Late Quaternary stratigraphy of Baltic Sea Basins – a review, Bull. Geol. Soc. (Finland), 64, 189–194.
  • Winton M., 2000, A reformulated three-layer sea ice model, J. Atmos. Ocean Technol., 17, 525–531.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.