EN
Desmopressin (DDAVP) action on platelets is associated with the development of procoagulant response but the underlying mechanism of this phenomenon is not known. We investigated whether this effect of DDAVP might be due to activation of plasma membrane Na+ /H+ exchanger. The DDAVP-induced platelet procoagulant response, measured as phospholipid-dependent thrombin generation, was dose dependent and significantly weaker than that produced by collagen or monensin (mimics Na+ /H+ antiport). Both the DDAVP- and collagen-produced procoagulant responses were less pronounced in the presence of EIPA, an Na+/H+ exchanger inhibitor. Flow cytometry studies revealed that in vitro treatment of platelets with DDAVP or collagen was associated with the appearance of both degranulated (and fragmented) and swollen cells. The DDAVP-evoked rise in size and granularity heterogeneity was similar to that produced by collagen or monensin and was not observed in the presence of EIPA. Using flow cytometry and annexin V-FITC as a probe for phosphatidylserine (PS) we demonstrated increased and uniform binding of this marker to all subsets of DDAVP-treated platelet population. The DDAVP-evoked PS expression was dose dependent, strongly reduced by EIPA and weaker than that caused by monensin or collagen. As judged by optical swelling assay, DDAVP in a dose dependent manner produced a rise in platelet volume. The swelling was inhibited by EIPA and its kinetics was similar to that observed in the presence of monensin. Electronic cell-sizing measurements showed an increase in mean platelet volume and a decrease in platelet count and platelet crit upon treatment with DDAVP. DDAVP elicited a slow (much slower than collagen) alkalinization of platelet cytosol. Altogether the data indicate an involvement of Na+/H+ exchanger in the generation of procoagulant activity in DDAVP-treated platelets.