PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 60 | 1 |

Tytuł artykułu

The role of the thalamic reticular neurons in alpha-and gamma-oscillations in neocortex: a mechanism for selective perception and stimulus binding

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The long-term objective is to understand how large masses of neurons in the brain process information during various learning and memory paradigms. Both time- and space-dependent processes have been identified in animals through computer-based analytic quantifications of event-related extracellular potentials. New nonlinear analyses have been introduced that presume that the fine-grain variation in the signal is determined and patterned in phase-space. Some neurons in the primary visual cortex manifest gamma-band oscillations. These cells show both a nonspecific phase-alignment (response synchrony) and a specific tuning (orientation tuning) when stimuli are presented to their receptive fields. This dual regulation of the sensory cells is proposed to underlie stimulus binding, a theoretical mechanism for "object" perception. Nonlinear analytic results from gamma-activities in a simple model neuropil (olfactory bulb) suggest that neuroplasticity may arise through self-organization, a process in which a nonlinear change in the dynamics of the oscillatory field potentials is the hallmark. This self-organization may follow simple dynamical laws in which global cooperativity among the neurons is transiently brought about that, over trials, results in enduring changes in the nonlinear dynamics of some neurons. In conclusion, the sculpturing of the synaptic throughput in the sensory cortex (stimulus binding) may be associated with the irregular phases of the gamma-activities and may result from both specific and nonspecific systems operating together in a nonlinear self-organizing manner.

Wydawca

-

Rocznik

Tom

60

Numer

1

Opis fizyczny

p.123-142,fig.

Twórcy

autor
  • Delaware Water Gap Science Institute, Bangor, PA, USA
autor
autor

Bibliografia

  • Adey R.W. (1972) Organization of brain tissue: is the brain a noisy processor? J. Neurosci. 3: 271-284.
  • Babloyantz A. (1990) Chaotic dynamics in brain activity. In: Chaos in brain (Ed. E. Basar). Function. Springer-Verlag, Berlin, p. 42-48.
  • Basar-Eroglu C., Struber D., Kruse P., Basar E., Stadler M. (1996) Frontal gamma-band enhancement during multi- stable visual perception. Int. J. Psychophysiol. Nov. 24: 113-125.
  • Basar-Eroglu C., Struber D., Schurmann M., Stadler M., Basar E. (1996) Gamma-band responses in the brain: a short review of psychophysiological correlates and func­tional significance. Int. J. Psychophysiol. Nov. 24: 101­112.
  • Brett B., Krishnan G., Barth D.S. (1996) The effects of sub­cortical lesions on evoked potentials and spontaneous high frequency (gamma-band) oscillating potentials in rat audi­tory cortex. Brain Res. 721: 155-166.
  • Bullock H. (1976) Redundancy and noise in the nervous sys­tem: does the model based on unreliable neurons sell nature short. In: Electrobiology of nerve, synapse and muscle (Eds. J. Reuben, D.P. Purpura, M.V.L. Bennett and E.R. Kandel). Raven, New York, p. 45-53.
  • Desmedt J.E., Tomberg C. (1994) Transient phase-locking of 40Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic per­ception. Neurosci. Lett. 28; 168: 126-129.
  • Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Munk M., Reitboeck H.J. (1988) Coherent oscillations: a mech­anism of feature linking in the visual cortex? Biol. Cybern. 60: 121-130.
  • Eckhorn R., Frien A., Bauer R., Woelbern T., Kehr H. (1993) High frequency 60-90Hz oscillations in primary visual cortex of awake monkey. NeuroReport 4: 243­246.
  • Elbert T., Ray W.J., Kowalik Z.J., Skinner J.E., Graf K., Bir- baumer N. (1994) Chaos in physiology: deterministic chaos in excitable cell assemblies. Physiol. Rev. 74: 1-47.
  • Freeman W.J. (1994) Characterization of state transitions in spatially distributed, chaotic nonlinear dynamical sys­tems in cerebral cortex. Integr. Physiol. Behav. Sci. 29:294-306.
  • Freeman W.J. (1995) Societies of brains: a study in the neuros­cience of love and hate. Erlbaum, Hillsdale, NJ, p. 1-204.
  • Gray C.M., König P., Engel A.K., Singer W. (1989) Stimulus- specific neuronal oscillations in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337.
  • Gray C.M., McCormick D.A. (1996) Chattering cells: super­ficial pyramidal neurons contributing to the generation of synchronous oscillations in visual cortex. Science 274: 109-113.
  • Gray C.M., Singer W. (1987) Stimulus-specific neuronal os­cillations in the cat visual cortex: a cortical functional unit. Soc. Neurosci. Abstr. 13: 404.3.
  • Gray C.M., Singer W. (1989) Stimulus-specific neuronal os­cillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sei. USA, 86: 1698-1702.
  • Gray C.M., Skinner J.E. (1988) Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade. Exp. Brain Res. 69: 378-386.
  • Haken H. (1983) Synergetics: an introduction. Springer, Ber­lin, 398 p.
  • Hashimi M.W., Thornton J.D., Downey J.M., Cohen M.V. (1998) Loss of myocardial protection from ischemic pre­conditioning following chronic exposure to R(-)-N6-(2- phenylisopropyl)adenosine is related to defect at the adenosine Al receptor. Mol. Cell. Biochem. 186: 19-25.
  • Herkenham M.A. (1979) The afferent and efferent connec­tions of the ventromedial thalamic nucleus in the rat. J. Comp. Neurol. 183:487-518.
  • Herkenham M.A. (1986) New perspectives on the organiza­tion and evolution of nonspecific thalamocortical projec­tions. In: Cerebral cortex (Eds. E.G. Jones and A. Peters). Plenum Press, New York, p. 403-445.
  • Jagadeesh B., Gray CM., Ferster D. 1992. Visually-evoked oscillations of membrane potential in neurons of cat striate cortex studied with in vivo whole cell patch recording. Science 257: 552-554.
  • JoliotM., Ribary U., Llinas R. (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal bind­ing. Proc. Natl. Acad. Sei. USA 91: 11748-11751.
  • Kaufman S.A. (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York.
  • Kowalik Z.J., Elbert T. (1994) Changes of chaoticness in spontaneous EEG/MEG. Integr. Physiol. Behav. Sei. 29: 270-282.
  • Kowalik Z.J., Leiber T. (1998) Biomedizinische Zeitreihen: Möglichkeiten und Grenzen. In: Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft (Ed. K. Mainzer). Springer, Berlin, p. 223-246.
  • Kowalik Z.J., Witte O.W. (2000) Deterministic brain oscillations in the magnetoeneephalogram. Acta Neurobiol. Exp. 60: (in press)
  • Kowalik Z.J., Wrobel A., Rydz A. (1996) Why does the human brain need to be a nonlinear system? Behav. Brain. Sci. 19: 302-303.
  • Livingstone M.S. (1996) Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. J. Neurophy- siol. 75: 2467-2485.
  • Lutzenberger W., Pulvermuller F., Birbaumer N. (1994) Words and pseudowords elicit distinct patterns of 30­Hz EEG responses in humans. Neurosci. Lett. 176: 115-118.
  • Magee J.C., Johnston D. (1997) A signal controlled, associ­ation system for Hebbian plasticity in hippocampal neu­rons. Science 275: 209-213.
  • Magoun H. W. (1963) The waking brain. Thomas, Springfield, 174 p.
  • Markram H., Lubke J., Frotscher M., Sakmann B. (1997) Regulation of synaptic efficacy by coincidence of post­synaptic action potentials and EPSPs. Science 275: 213­215.
  • Mayer-Kress G., Yates F.E., Benton L., Keidel M., Tirsch W., Poppl S.J., Geist, K. (1988) Dimensional analysis of non­linear oscillations in the brain, heart and muscle. Math. Bio- sci. 90: 155-182.
  • Milner P. (1974) A model for visual shape recognition. Psy­chol. Rev. 81:521-535.
  • Mishkin M., Murray E.A. (1994) Stimulus recognition. Cur. Opin. Neurobiol. 4: 200-206.
  • Mitra M., Skinner J.E. (1992) Low-dimensional chaos maps learning in a model neuropil (olfactory bulb). Integr. Physi­ol. Behav. Sci. 27: 305-322.
  • Molnar M., Karmos G., Csepe V., Winkler I. (1988) Intracor- tical auditory evoked potentials during classical aversive conditioning in cats. Biol. Psychol. 26: 349-350.
  • Munk M.H.J., Roelfsema P.R., Konig P., Engel A.K., Singer W. (1996) Role of reticular activation in the modulation of intracortical synchronization. Science 272: 271-274.
  • Pantev C. (1995) Evoked and induced gamma-band activity of the human cortex. Brain Topogr. 7: 321-330.
  • Pedroarena C., Llinas R. (1997) Dendritic calcium conduct­ances generate high-frequency oscillations in thalamo­cortical neurons. Proc. Natl. Acad. Sci. USA 94: 724-728.
  • Prigogine I. (1980) From being to becoming: time and com­plexity in the physical sciences. San Freeman, Francisco, 261 p.
  • Pritchard W.S., Duke D.W. (1995) Measuring chaos in the brain: a tutorial review of EEG dimension estimation. Brain Cognit. 27: 353-397.
  • Scheibel M.E., Scheibel A.B. (1967) Structural organization of nonspecific thalamic nuclei and their projection toward cortx. Brain Res. 6: 60-94.
  • Singer W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55: 349-374.
  • Skinner J.E. (1984) Central gating mechanisms that regulate event-related potentials and behavior. In: Self-regulation of the brain and behavior (Eds. T. Elbert, B. Rockstroh, W. Lutzenberger and N. Birbaumer). Springer-Verlag, New York, p. 42-58.
  • Skinner J.E., Carpeggiani C., Landisman C.E., Fulton K.W. (1991) The correlation-dimension of heart beat intervals is reduced in conscious pigs by myocardial ischemia. Circ. Res. 68: 966-976.
  • Skinner J.E., Lindsley D.B. (1967) Electrophysiological and behavioral effects of blockade of the nonspecific thalamo­cortical system. Brain Res. 6: 95-118.
  • Skinner J.E., Lindsley D.B. (1971) Enhancement of visual and auditory evoked potentials during blockade of the nonspe­cific thalamocortical system. Electroencephalogr. Clin. Neurophysiol. 31:1-6.
  • Skinner J.E., MitraM., Fulton K. (1991) Low-dimensional chaos in a simple biological Model of neocortex: implications for cardiovascular and cognitive disorders. In: International perspectives on self-regulation and health (J.G. Carlson and A.R. Seifert). Plenum, New York, p. 95-119.
  • Skinner J.E., Molnar M. (1999a) Event-related dimensional reductions of the primary auditory cortex of the conscious cat are revealed by new techniques for enhancing the non­linear dimensional algorithms. Int. J. Psychophysiol. 34: 21-35.
  • Skinner, J.E., Molnar, M. (1999b) "Response Cooperativity:" a sign of a nonlinear neocortical mechanism for stimulus- binding during classical conditioning in the cat. Ind. Natl. Sci. Acad. Proc. (in press)
  • Skinner J.E., Molnar M., Vybiral T., Mitra M. (1992) Appli­cation of chaos theory to biology and medicine. Integr. Physiol, and Behav. Sci. 27: 43-57.
  • Skinner J.E., Pratt C.M., Vybiral T. (1993) A reduction in the correlation dimension of heart beat intervals proceeds im­minent ventricular fibrillation in human subjects. Am. Heart J. 125:731-743.
  • Skinner J.E., Wolf S.G., Kresh J.Y., Izrailtyn I., Armour J.A., Huang M-He. (1996) Application of chaos theory to a model biological system: evidence of self-organization in the intrinsic cardiac nervous system. Integr. Physiol. Behav. Sci. 31: 122-146.
  • Skinner J.E., Yingling C. D. (1977) Central gating mechanisms that regulate event-related potentials and behavior: a neural model for attention. Prog. Clin. Neurophysiol. 1: 30-69.
  • Steriade M., Amzica F., Contreras D. (1996b) Synchroniza­tion of fast (30-40 Hz) spontaneous cortical rhythms during brain activation. J. Neurosci. 16: 392-416.
  • Steriade M., Contreras D., Amzica F., Timofeev I. (1996a) Synchronization of fast (30-40Hz) spontaneous oscilla­tions in intrathalamic and thalamocortical networks. J. Neurosci. 16: 2788-2808.
  • Steriade M., Curro Dossi R., Pare D., Oakson G. (1991b) Fast oscillations (20-40Hz) in thalmocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc. Natl. Acad. Sci. USA 88: 4396-4400.
  • Steriade M., Llinas R. (1988) The functional states of the tha­lamus and the associated neuronal interplay. Physiol. Rev. 68: 649-742.
  • Steriade M., Parent A., Hada J. (1984) Thalamic projections of nucleus reticularis thalami of the cat: a study using hor­seradish peroxidase and double florescent tracers. J. Comp. Neurol. 229:531-547.
  • Steriade M., Wyzinski P.(1972) Cortically elicited activities in thalamic reticularis neurons. Brain Res. 42: 514-520.
  • Takens F. (1985) On the numerical determination of an attrac- tor. Lec. Not. Math. 1125: 99-106.
  • Thornton J.D., Lui G.S., Downey J.M. (1993) Pretreatment with pretussis toxin blocks the protective effects of precon­ditioning: evidence for a G-protein mechanism. J. Mol. Cell Cardiol. 25:311-320.
  • Valesco M., Skinner J.E., Asaro K.D., Lindsley D.B. (1968) Thalamocortical systems regulating spindle bursts and re­cruiting responses. I. Effect of cortical ablations. Elec­troencephalogr. Clin. Neurophysiol. 25: 463-470.
  • Varela F.J. (1995) Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. Biol. Res. 28: 81-95.
  • von der Malsburg C., Schneider W. (1986) A neural coctail- party processor. Biol. Cybern. 54: 29-40.
  • Vybiral T., Skinner J.E. (1993) The point correlation dimen­sion of RR-interals predicts sudden cardiac death among high risk patients. Comp. Cardiol. 257-260.
  • Yingling C.D., Skinner J.E. (1975) Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticu­lar formation and the frontal granular cortex. Electroence­phalogr. Clin. Neurophysiol. 39: 635-642.
  • Young M.P., Tanaka K., Yamane S. (1992) On oscillating neuronal responses in the visual cortex of the monkey. J. Neurophysiol. 67: 1464-1474.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-33a890e8-98ae-4aa5-82b3-011cc59dab72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.