PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2004 | 51 Supplement |

Tytuł artykułu

Genetic reactivity of Norway spruce Picea abies (L.) Karst. to soil fertility

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Seedlings of various provenances and progenies were greenhouse grown in sand cultures with different levels of nitrogen, phosphorus, potassium, calcium and magnesium. The first experiment tested 20 provenances and the next studied 45–50 half-sib families of 9–10 provenances to establish the interaction between Picea abies genotypes and nutrition levels. Spruces of various origins differed in their nutrient requirements. In particular, seedlings from Wisła and Istebna grew better at smaller phosphorus levels. The genotype × environment interactions were significant for numerous traits when seedlings were grown at different levels of nitrogen, phosphorus and calcium, and for a few traits for potassium. The proportion of variance explained by interaction was small. Generally, the interactions were significant for a greater number of traits at progeny level than at provenance level. The results suggest that it is possible to select genotypes which are suitable for specific site conditions and genotypes which are stable over a wide range of nutrition levels.

Wydawca

-

Czasopismo

Rocznik

Opis fizyczny

p.57-63,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland

Bibliografia

  • Bentzer B.G., Foster G.S., Hellberg A.R., Podzorski A.C. 1988. Genotype × environment interaction in Norway spruce involving three levels of genetic control: seed source, clone mixture, and clone. Canadian Journal of Forest Research 18: 1172–1181.
  • Burdon R.D., Harris J.M. 1973. Wood density in Radiata Pine clones on four different sites. New Zealand Journal of Forestry Science 3 (3): 286–303.
  • Eberhart S.A., Russell W.A. 1966. Stability parameters for comparing varieties. Crop Science 6: 36–40.
  • Ekberg I., Eriksson G., Hadders G. 1982. Growth of intra- and interprovenances families of Picea abies (L.) Karst. Silvae Genetica 31: 160–167.
  • Finlay K.W., Wilkinson G.N. 1963. The analysis of adaptation in plant-breeding programme. Australian Journal of Agricultural Research 14: 742–754.
  • Fober H. 1990. Wpływ zróżnicowanego poziomu fosforu w pożywce mineralnej na wzrost siewek świerka pospolitego (Picea abies (L.) Karst.) różnych rodów i proweniencji. Arboretum Kórnickie 35: 105–118.
  • Fober H., Giertych M. 1970. Phosphorus uptake by spruce (Picea abies (L.) Karst.) seedlings of various provenance. Arboretum Kórnickie 15: 99–116.
  • Giertych M. 1984. Report on the IUFRO 1938 and 1939 provenance experiments on Norway spruce (Picea abies (L.) Karst.). Polish Academy of Sciences, Institute of Dendrology, Kórnik, Poland.
  • Gullberg U., Vegerfors B. 1987. Genotype-environment interaction in Swedish material of Pinus sylvestris. Scandinavian Journal of Forest Research 2 (4): 417–432.
  • Hodge G.R., Dvorak W.S. 1999. Genetic parameters and provenance variation of Pinus tecunumanii in 78 international trials. Forest Genetics 6 (3): 157–180.
  • Ingestad T. 1959. Studies on the nutrition of forest tree seedlings. II. Mineral nutrition of spruce. Physiologia Plantarum 12: 568–593.
  • Jahromi S.T., Goddard R.E., Smith W.H. 1976. Genotype × fertilizer interactions in slash pine. Growth and nutrient relations. Forest Science 22: 211–219.
  • Karki D., Lee S.J., Bista M.S., Joshi R.B., Amatya S.M., Parajuli A.V., Adhikari M.K., Saiju H.K., Thakur R., Suzuki K., Ishii K. 2000. Early selection in tree breeding: research experience of Sitka spruce, using farm-field site technique. Procedings of the 8th International Workshop of BIOREFOR, Kathmandu, Nepal. Nov. 28–Dec. 2, 1999. 2000: 98–104.
  • Karlsson B., Wellendorf H., Roulund H., Werner M. 2001. Genotype × trial interaction and stability across sites in 11 combined provenance and clone experiments with Picea abies in Denmark and Sweden. Canadian Journal of Forest Research 31 (10): 1826–1836.
  • Kleinschmit J. 1985. Concepts and experiences in clonal plantations of conifers. Proc. Can. Tree Imp. Ass., 19th Meeting, Toronto, Ontario. August 23–26, 1983 (eds. Zuffa L., Rauter R.M., Yeatman C.W.), Part 2: Clonal forestry: 26–56.
  • Krupski P., Giertych M., Czech I. 1996. Interakcje genotypu ze środowiskiem świerka pospolitego (Picea abies (L.) Karst.) z Beskidu Śląskiego, Żywieckiego i Orawy. Sylwan 149 (9): 35–47.
  • Li B., McKeand S.E. 1989. Stability of loblolly pine families in the southeastern U.S. Silvae Genetica 38 (3–4): 96–101.
  • Linhart Y.B., Mooney K.A., Snyder M.A., Swoboda-Colberg N. 2001. Phloem chemistry: effects of genotype and environment and implications for nutritional ecology. International Journal of Plant Sciences 162 (5): 1009–1016.
  • Major J.E., Johnsen K.H. 2001. Shoot water relations of mature black spruce families displaying a genotype × environment interaction in growth rate. III. Diurnal patterns as influenced by vapor pressure pressure deficit and internal water status. Tree Physiology 21 (9): 579–587.
  • Matheson A.C., Cotterill P.P. 1990. Utility of genotype × environment interactions. Forest Ecology and Management 30 (1–4): 159–174.
  • McKeand S.E., Grissom J.E., Handest J.A., O’Malley D.M., Allen H.L., Mitchell A.K., Puttonen P., Stoehr M., Hawkins B.J. 2000. Responsiveness of diverse provenances of loblolly pine to fertilization – age 4 results. Journal of Sustainable Forestry 10 (1–2): 87–94.
  • Mullin T.J. 1985. Genotype-nitrogen interactions in full-sib seedlings of Black spruce. Canadian Journal of Forest Research 15 (6): 1031–1038.
  • Shelbourne C.J.A. 1973. Genotype-environment interactions in Radiata Pine. Report of Forest Research Institute for 1972. New Zealand Forest Service 1973: 23–24.
  • Sonesson J., Eriksson G. 2000. Genotypic stability and genetic parameters for growth and biomass traits in a water × temperature factorial experiment with Pinus sylvestris L. seedlings. Forest Science 46 (4): 487–495.
  • Sonesson J., Jansson G., Eriksson G. 2002. Retrospective genetic testing of Picea abies under controlled temperature and moisture regimes. Canadian Journal of Forest Research 32 (1): 81–91.
  • Wanyancha J.M., Morgenstern E.K. 1987a. Genetic variation in response to soil types and phosphorus fertilizer levels in tamarack families. Canadian Journal of Forest Research 17 (10): 1251–1256.
  • Wanyancha J.M., Morgenstern E.K. 1987b. Genetic variation in response to nitrogen fertilizer levels in tamarack families. Canadian Journal of Forest Research 17 (10): 1246–1250.
  • Woolaston R.R., Kanowski P.J., Nikles D.G. 1991. Genotype-environment interactions in Pinus caribaea var. hondurensis in Queensland, Australia. I. Population × site interactions. Silvae Genetica 40 (5–6): 224–228.
  • Wright J.W. 1973. Genotype-environment interaction in North Central United States. Forest Science 19 (2): 113–123.
  • Wu R.L., Grissom J.E., O’Malley D.M., McKeand S.E., Mitchell A.K., Puttonen P., Stoehr M., Hawkins B.J. 2000. Root architectural plasticity to nutrient stress in two contrasting ecotypes of loblolly pine. Frontiers of Forest Biology. In: Proceedings of the 1998 Joint Meeting of the North American Forest Biology Workshop and the Western Forest Genetics Association. Part 2. Journal of Sustainable Forestry 10 (3–4): 307–317.
  • Zhou Z.C., Wu J.F., Lan Y.Z., Dai D.S. 2000. Height growth response of superior provenances of Masson pine to different levels of phosphorus supply. Forest Research, Beijing 13 (6): 667–672.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-335f2cfb-949d-4622-b0d9-ded8e57793b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.