PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 58 | 3 |

Tytuł artykułu

Purification and biochemical characteristic of a cold-active recombinant esterase from Pseudoalteromonas sp. 643A under denaturing conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper production of a cold-active esterase EstA from the Antarctic bacterium Pseudoalteromonas sp. 643A in E. coli expression system was described. The purification and biochemical characteristic of EstA were performed in the presence of urea and then compared with results obtained for the esterase with no addition of urea and isolated from the native source. In both cases the cold-active enzyme displayed similar properties. However, the differences concerning thermal activity were observed. The optimal temperature for recombinant esterase in the presence of urea (1 M) was about 15°C lower in comparison with enzyme isolated from the native source. Furthermore, the EstA was found to be more thermolabile in denaturant conditions. The differences were presumably caused by slightly changed protein structure in the presence of urea. The preservation of activity of EstA dissolved in buffer containing 8M urea suggests that the protein structure is retained and it does not undergo dramatic changes due to high urea concentration. This thesis was confirmed with FT-IR data.

Wydawca

-

Rocznik

Tom

58

Numer

3

Opis fizyczny

p.211-218,fig.,ref.

Twórcy

autor
  • Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk, Poland
autor
autor
autor

Bibliografia

  • Akoh C.C., G.C. Lee, Y.C, Liaw, T.H. Huang and J.F. Shaw. 2004. GDSL family of senne esterases/lipases. Prog. Lipid. Res. 43: 534-552.
  • Arpigny J.L. and K.E. Jaeger. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343: 177-183.
  • Arrondo J.L. and F.M. Goni. 1999. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog. Biophys. Mol. Biol. 72: 367-405.
  • Barth A. and C. Zscherp. 2002. What vibrations tell us about proteins. Quart. Rev. Biophys. 35: 369-430.
  • Chung G.H., Y.P. Lee, O.J. Yoo and J.S. Rhee. 1991. Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Appl. Microbiol. Biotechnol. 35: 237-241.
  • Cieśliński H., A.M. Białkowska, A. Długołęcka, M. Daroch, K.L. Tkaczuk, H. Kalinowska, J. Kur and M. Turkiewicz. 2007. A cold-adapted esterase from psychrotrophic Pseudoalteromonas sp. strain 643A. Arch. Microbiol. 188: 27-36.
  • Deshpande R.A., A.R. Kumar, I..Khan and V. Shankar. 2001. Ribonuclease Rs from Rhizopus stolonifer. lowering of optimum temperature in the presence of urea. Biochim. Biophys. Acta 1545: 13-19.
  • Długołęcka A., H. Cieśliński, M. Turkiewicz, A.M. Białkowska and J. Kur. 2008. Extracellular secretion of Pseudoalteromonas sp. cold-adapted esterase in Escherichia coli in the presence of Pseudoalteromonas sp. components of ABC transport system. Protein Expr. Purif. 62: 179-84.
  • Fojan P,. P.H. Jonson, M.T.N. Petersen and S.B., Petersen. 2000. What distinguishes an esterase from a lipase: A novel structural approach. Biochimie. 82: 1033-1041.
  • Grinberg V.Y., TV. Burova, N.V. Grinberg, T.A. Sheherbakova, D.T. Guranda, G.G. Chilov and V.K. Svedas. 2008. Thermodynamic and kinetic stability of penicillin acylase from Escherichia coli. Biochim. Biophys. Acta 1784: 736-746.
  • Haris P.I. and F. Severcan. 1999. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B: Enz. 7: 207-221.
  • Jaeger K.E., B.W. Dijkstra and M.T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351.
  • Jaeger K.E. and T. Eggert. 2002. Lipases for biotechnology. Curt: Opin. Biotechnol. 13: 390-397.
  • Jaeger K.E. and M.T. Reetz. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16: 396-403.
  • Kaufman B.T. 1968. Studies on dihydrofolic reductase. III. Activation of the chicken liver enzyme by urea and thiourea. J. Biol. Chem. 243: 6001-6008.
  • Kulakova L., A. Galkin, T. Nakayama, T. Nishino and N. Esaki. 2004. Cold-active esterase from Psychrobacter sp. Ant300; gene cloning, characterization, and the effects of Gly—>Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65.
  • Kumar A.R., S.S. Hegde, K.N. Ganesh and M.I. Khan. 2003. Structural changes enhance the activity of Chainia xylanase in low urea concentrations. Biochim. Biophys. Acta 1645: 164-171.
  • Lo Y.C., S.C. Lin, J.F. Shaw and Y.C. Liaw. 2003. Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipases L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J. Mol. Biol. 330: 539-551.
  • Narayanasami R., J.S. Nishimura, K. McMillan, L.J. Roman, T.M. Shea, A.M. Robida, P.M. Horowitz and B.S.S. Masters. 1997. The influence of chaotropic reagents on neuronal nitric oxide synthase and its flavoprotein module, urea and guanidine hydrochloride stimulate NADPH-cytochrome c reductase activity of both proteins. Nitric Oxide 1: 39-49.
  • Natalello A., D. Ami, S. Brocca, M. Lotti and S.M. Doglia. 2005. Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy. Biochem. J. 385: 511-517.
  • Pandey A., S. Benjamin, C.R. Soccol, P. Nigam, N. Krieger and V.T. Soccol. 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29, 119-131.
  • Rashid V. Y. Shimada, S. Ezaki, H. Atomi and T. Imanaka. 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069.
  • Ryu H.S., H.K. Kim, W.C. Choi, M.H. Kim, S.Y. Park, N.S. Han, T.K. Oh and J.K. Lee. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326.
  • Sambrook J. and D.W. Russel. 2001. Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Shahnawaz M., A. Thapa and I.S. Park. 2007. Stable activity of a deubiquitylating enzyme (Usp2-cc) In the presence of high concentrations of urea and its application to purify aggregation-prone peptides. Biochem. Biophys. Res. Commun. 359: 801-805.
  • Sharma R., Y. Chisti, Y. and U.C. Banerjee. 2001. Production, purification, characterization, and application of lipases. Biotechnol. Adv. 19: 627-662.
  • Singh R., N. Gupta, V.K. Goswami and R. Gupta. 2006. A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biotechnol. 70: 679-682.
  • van de Weert M., P.I. Haris, W.E. Hennink and D.J.A. Crommelin. 2001. Fourier transform infrared spectrometry analysis if protein conformation: effect of sampling method and stress factors. Anal. Biochem. 297: 160-169.
  • Walker J. M. 1996. The protein protocols handbook. 2nd ed. Human Press, New Jersey.
  • Zhang H.J, X.R. Sheng, X.M. Pan and J.M. Zhou. 1997. Activation of adenylate kinase by denaturants is due to the increasing conformational flexibility at its active sites. Biochem. Biophys. Res. Commun. 238: 382-386.
  • Zhuo Q., J.H. Piao, R. Wang and X.G. Yang. 2005. Refolding and purification of non-fusion HPT protein expressed in Escherichia coli as inclusion bodies. Protein Expr. Purif. 41: 53-60.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-32be6afc-f74a-408f-8dbd-f307bca8f83c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.