EN
Toll-like receptors (TLRs) have been described as major components of the innate immune system, recognizing the conserved molecular structures found in the large groups of pathogens called pathogen-associated molecular patterns (PAMPs). TLR expression is ubiquitous, from epithelial to immunocompetent cells. TLR ligation triggers several adapter proteins and downstream kinases, leading to the induction of key pro-inflammatory mediators but also anti-inflammatory and anti-tumor cytokines. The result of this activation goes beyond innate immunity to shape the adaptive responses against pathogens and tumor cells, and maintains host homeostasis via cell debris utilization. TLRs have already become potent targets in infectious disease treatment and vaccine therapy and in neoplastic disease treatment, due to their ability to enhance antigen presentation. However, some studies show the dual effect of TLR stimulation on malignant cells: they can be proapoptotic or promote survival under different conditions. It is therefore crucial to design further studies assessing the biology of these receptors in normal and transformed cells. The established role of TLRs in human disease therapy is based on TLR7 and TLR4 agonists, respectively for the novel treatment of some types of skin cancer and for the anti-hepatitis B virus vaccine. Some clinical trials involving TLR agonists as potent enhancers of the anti-tumor response in solid tumors have begun.