PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2002 | 61 | 2 |

Tytuł artykułu

Cholinergic innervation of parvalbumin- and calbindin-containing neurones in the hippocampus during postnatal development of the rat brain

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Immunohistochemical study of the cholinergic innervation of the parvalbuminand calbindin-containing cells in the hippocampus was conducted on 30 rat brains of various postnatal ages: P0, P4, P7, P14, P21, P30, P60 and P180. Sections with double immunostaining for vesicular acetylcholine transporter (VAChT; the marker of cholinergic cells, fibres and terminals) and parvalbumin (PV) or calbindin (CB) were analysed using confocal laser-scanning microscope. Obtained data demonstrate that the pattern of cholinergic innervation of calbindin- and parvalbumin-immunoreactive hippocampal neurones shows some differences. During development as well as in the adult species cholinergic terminals preferentially innervate CB-containing neurones, while cholinergic terminals on PV-containing cells were observed rarely. Cholinergic endings on the CB-ir neurones are localised both on their somata and dendrites, whereas on PV-ir cells they form synaptic contact predominantly with processes. In spite of the unquestionable cholinergic influence particularly on CB-ir cells, the number of cholinergic endings suggests that this input seems not to be crucial for the activity of the studied cell populations.

Wydawca

-

Czasopismo

Rocznik

Tom

61

Numer

2

Opis fizyczny

p.89-96,fig.,ref.

Twórcy

autor
  • Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
autor
autor
autor
autor

Bibliografia

  • 1. Amaral DG, Kurz J (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol, 240: 37–59.
  • 2. Andressen C, Blümcke I, Celio MR (1993) Calcium-binding protein: selective markers of nerve cells. Cell Tiss Res, 271: 181–208.
  • 3. Berger B, Alvarez C (1996) Neurochemical development of the hippocampal region in the fetal rhesus monkey. 3. Calbindin-D28K, calretinin and parvalbumin with special mention of Cajal-Retzius cells and the retrosplenial cortex. J Comp Neurol, 366: 674–699.
  • 4. Berger B, De Grissac N, Alvarez C (1999) Precocious development of parvalbumin-like immunoreactive interneurons in the hippocampal formation and entorhinal cortex of the fetal cynomolgus monkey. J Comp Neurol, 403: 309–331.
  • 5. Bergmann I, Nitsch R, Frotscher M (1991) Area-specific morphological and neurochemical maturation of nonpyramidal neurons in the rat hippocampus as revealed by parvalbumin immunocytochemistry. Anat Embryol (Berl), 184: 403–409.
  • 6. Bilkey DK, Goddard GV (1985) Medial septal facilitation of hippocampal granule cell activity is mediated by inhibition of inhibitory interneurones. Brain Res, 361: 99–106.
  • 7. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci, 15: 47–60.
  • 8. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, 35: 375–475.
  • 9. De Lecea L, Del Río JA, Soriano E (1995) Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat. Mol Brain Res, 32: 1–13.
  • 10. Deller T, Nitsch R, Frotscher M (1994) Associational and commissural afferents of parvalbumin-immunoreactive neurons in the rat hippocampus: A combined immunocytochemical and PHA-L study. J Comp Neurol, 350: 612–622.
  • 11. Dougherty KD, Milner TA (1999) Cholinergic septal afferent terminals preferentially contact neuropeptide Y-containing interneurons compared to parvalbumin-containing interneurons in the rat dentate gyrus. J Neurosci, 19: 10140–10152.
  • 12. Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336: 170–173.
  • 13. Frotscher M (1988) Neuronal elements in the hippocampus and their synaptic connections, In: Neurotransmision in the hippocampus, pp. 2–19.
  • 14. Frotscher M, Leranth C (1986) The cholinergic innervation of the rat fascia dentata: Identification of target structures on granule cells by combining choline acetyltransferase immunocytochemistry and Glogi impregnation. J Comp Neurol, 243: 58–70.
  • 15. Fukuda T, Aika Y, Heizmann CW, Kosaka T (1996) Dense GABAergic input on somata of parvalbumin-immunoreactive GABAergic neurons in the hippocampus of the mouse. Neurosci Res, 26: 181–194.
  • 16. Gulyás AI, Toth K, Danos P, Freund TF (1991) Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat hippocampus. J Comp Neurol, 312: 371–378.
  • 17. Halasy K, Miettinen R, Szabat E, Freund TF (1992) GABAergic interneurons are the major postsynaptic targets of median raphe afferents in the rat dentate gyrus. Eur J Neurosci, 4: 144–153.
  • 18. Han ZS, Buhl EH, Lorinczi Z, Somogyi P (1993) A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur J Neurosci, 5: 395–410.
  • 19. Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Weisenhorn DMV (1999) Cellular distribution of the calcium binding proteins parvalbumin, calbindin and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat, 16: 77–116.
  • 20. Hornung J-P, Celio MR (1992) The selective innervation by serotoninergic axons of calbindin-containing interneurons in the neocortex and hippocampus of the marmoset. J Comp Neurol, 320: 457–467.
  • 21. Jiang M, Swann JW (1997) Expression of claretinin in diverse neuronal populations during development of rat hippocampus. Neuroscience, 81: 1137–1154.
  • 22. Klapstein GJ, Colmers WF (1997) Neuropeptide Y suppresses epileptiform activity in rat hippocampus in vitro. J Neurophysiol, 78: 1651–1661.
  • 23. Layer PG (1990) Cholinesterases preceding major tracts in vertebrate neurogenesis. Bioessays, 12: 415–420.
  • 24. Layer PG, Weikert T, Alber R (1993) Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res, 273: 219–226.
  • 25. Lewis PR, Shute CC (1967) The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and the subfornical organ and supra-optic crest. Brain, 90: 521–540.
  • 26. Miettinen R, Sirvio J, Riekkinen P, Laakso MP, Riekkinen M (1993) Neocortical, hippocampal and septal parvalbumin-containing and somatostatin-containing neurons in young and aged rats — Correlation with passive avoidance and water maze performance. Neuroscience, 53: 367–378.
  • 27. Nitsch R, Bergmann I, Kuppers K, Mueller G, Frotscher M (1990) Late appearance of parvalbumin-immunoreactivity in the development of GABAergic neurons in the rat hippocampus. Neurosci Lett, 118: 147–150.
  • 28. Nitsch R, Soriano E, Frotscher M (1990) The parvalbumin-containing nonpyramidal neurons in the rat hippocampus. Anat Embryol (Berl), 181: 413–425.
  • 29. Paulsen O, Moser EI (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci, 21: 273–278.
  • 30. Pitkänen A, Amaral DG (1993) Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: The hippocampal formation. J Comp Neurol, 331: 37–74.
  • 31. Potier B, Krzywkowski P, Lamour Y, Dutar P (1994) Loss of calbindin-immunoreactivity in CA1 hippocampal stratum radiatum and stratum lacunosum-moleculare interneurons in the aged rat. Brain Res, 661: 181–188.
  • 32. Ribak CE, Nitsch R, Seress L (1990) Proportion of parvalbumin-positive basket cells in the GABAergic innervation of pyramidal and granule cells of the rat hippocampal formation. J Comp Neurol, 300: 449–461.
  • 33. Roghani A, Shirzadi A, Butcher LL, Edwards RH (1998) Distribution of the vesicular transporter for acetylcholine in the rat central nervous system. Neuroscience, 82: 1195–1212.
  • 34. Shetty AK, Turner DA (1998) Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. J Comp Neurol, 394: 252–269.
  • 35. Sik A, Penttonen M, Buzsáki G (1997) Interneurons in the hippocampal dentate gyrus: An in vivo intracellular study. Eur J Neurosci, 9: 573–588.
  • 36. Sloviter RS (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol, 280: 183–196.
  • 37. Solbach S, Celio MR (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol (Berl), 184: 103–124.
  • 38. Spruston N, Jaffe DB, Johnston D (1994) Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci, 17: 161–166.
  • 39. Tortosa A, Ferrer I (1993) Parvalbumin immunoreactivity in the hippocampus of the gerbil after transient forebrain ischaemia: A qualitative and quantitative sequential study. Neuroscience, 55: 33–43.
  • 40. Villa A, Podini P, Panzeri MC, Racchetti G, Meldolesi J (1994) Cytosolic Ca2+ binding proteins during rat brain ageing: loss of calbindin and calretinin in the hippocampus, with no change in the cerebellum. Eur J Neurosci, 6: 1491–1499.
  • 41. Wouterlood FG, Van Denderen JCM, Blijleven N, Van Minnen J, Hartig W (1998) Two-laser dual-immunofluorescence confocal laser scanning microscopy using Cy2- and Cy5-conjugated secondary antibodies: unequivocal detection of co-localization of neuronal markers. Brain Res Protocol, 2: 149–159.
  • 42. Yoon SP, Chung YY, Chang IY, Kim JJ, Moon JS, Kim HS (2000) Postnatal development of parvalbumin and calbindin D-28k immunoreactivities in the canine hippocampus. J Chem Neuroanat, 19: 143–154.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2fa0883a-2064-432a-a872-7d4f8b6618a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.