PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2008 | 53 | 2 |

Tytuł artykułu

Oligopeptidase B-2 from Leishmania amazonensis with an unusual C-terminal extension

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The oligopeptidase B serine protease is an important virulence factor and therapeutic target in Trypanosoma infections. Recently, the Leishmania major Genome Project identified a new oligopeptidase B that was denominated oligopeptidase B-like, herein named oligopeptidase B-2. In this study, a complete open reading frame of oligopeptidase B-2 from Leishmania amazonensis (PH8 strain) was amplified by PCR using primers designed for the oligopeptidase B-2 gene of L. major. The 2,715 bp fragment coded for a protein of 905 amino acids with a predicted molecular mass of 103,918.9 Da and theoretical pI of 5.82. The encoded protein displayed ∼96% identity with L. major and ∼75% identity with Trypanosoma cruzi and T. brucei oligopeptidases B-2, and ∼21% identity with Escherichia coli and L. amazonensis classical oligopeptidase B. An unusual C-terminal extension was found in relation to the classical trypanosomatid oligopeptidase B. By sequence alignment, we determined a catalytic triad (Ser 629, Asp 717 and His 758), S1 subsite (Glu 674 and Glu 676) and suggest a difference in the S2 subsite of L. amazonensis oligopeptidase B-2. We also found that the oligopeptidase B-2 gene is expressed in all cycle stages of L. amazonensis. A phylogenetic analysis indicated that oligopeptidase B-2 is a new member of oligopeptidase B.

Wydawca

-

Czasopismo

Rocznik

Tom

53

Numer

2

Opis fizyczny

p.197-204,fig.,ref.

Twórcy

  • Departamento de Bioquimica e Biologia Molecular, Fundacao Oswaldo Crus, Rio de Janeiro, RJ, Brazil

Bibliografia

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
  • Alves C.R., Benevolo-De-Andrade T.C., Alves J.L., Pirmez C. 2004. Th1 and Th2 immunological profile induced by cysteine proteinase in murine leishmaniasis. Parasite Immunology, 26, 127–135. DOI: 10.1111/j.0141-9838.2004.00691.x.
  • Alves C.R., Corte-Real S., Bourguignon S.C., Chaves C.S., Saraiva E.M. 2005. Leishmania amazonensis: Early proteinase activities during promastigote-amastigote differentiation in vitro. Experimental Parasitology, 109, 38–48. DOI: 10.1016/j.exppara.2004.10.005.
  • Azeredo-Coutinho R.B., Conceicao-Silva F., Schubach A., Cupolillo E., Quintella L.P., Madeira M.F., Pacheco R.S., Valete-Rosalino C.M., Mendonca S.C. 2007. First report of diffuse cutaneous leishmaniasis and Leishmania amazonensis infection in Rio de Janeiro State, Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, 735–737. DOI: 10.1016/j.trstmh.2007.01.005.
  • Barral A., Pedral-Sampaio D., Grimaldi G. Jr., Momen H., McMahon-Pratt D., Ribeiro de Jesus A., Almeida R., Badaro R., Barral-Netto M., Carvalho E.M. 1991. Leishmaniasis in Bahia, Brazil: Evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. American Journal of Tropical Medicine and Hygiene, 44, 536–546.
  • Becker M.M., Harrop S.A., Dalton J.P., Kalinna B.H., McManus D.P., Brindley P.J. 1995. Cloning and characterization of the Schistosoma japonicum aspartic proteinase involved in hemoglobin degradation. Journal of Biological Chemistry, 270, 24496–24501.
  • Burleigh B.A., Woolsey A.M. 2002. Cell signalling and Trypanosoma cruzi invasion. Cellular Microbiology, 4, 701–711. DOI: 10.1046/j.1462-5822.2002.00226.x.
  • Cazzulo J.J. 2002. Proteinases of Trypanosoma cruzi: Potential targets for the chemotherapy of Chagas disease. Current Topics in Medicinal Chemistry, 2, 1261–1271. DOI: 10.2174/1568 026023392995.
  • Chappuis F., Sundar S., Hailu A., Ghalib H., Rijal S., Peeling R.W., Alvar J., Boelaert M. 2007. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews Microbiology, 5, 873–882. DOI: 10.1038/ nrmicro1748.
  • Dávila A.M.R. 2002. Tripanosomose animal na América do Sul: Epizootiologia, Evolução e Tecnologias da Informação. Tese de doutorado. Fiocruz, RJ.
  • Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. 2005. Protein Identification and Analysis Tools on the ExPASy Server. In: (Ed. J.M. Walker) The Proteomics Protocols Handbook. Humana Press, 571–607.
  • Gerczei T., Keseru G.M., Naray-Szabo G. 2000. Construction of a 3D model of oligopeptidase B, a potential processing enzyme in prokaryotes. Journal of Molecular Graphics and Modelling, 18, 7–17. DOI: 10.1016/S1093-3263(99)00042-X.
  • Guedes H.L.M., Carneiro M.P.D., Gomes D.C.O., Rossi-Bergmann B., De-Simone S.G. 2007. Oligopeptidase B from L. amazonensis: Molecular cloning, gene expression analysis and molecular model. Parasitology Research, 101, 865–875. DOI: 10.1007/s00436-007-0630-8.
  • Huang X., Miller W. 1991. A time-efficient, linear-space local similarity algorithm. Advances in Applied Mathematics, 12, 337–357. DOI: 10.1016/0196-8858(91)90017-D.
  • Ivens A.C., Peacock C.S., Worthey E.A., Murphy L., Aggarwal G., Berriman M., et al. 2005. The genome of the kinetoplastid parasite, Leishmania major. Science, 309, 436–442. DOI: 10.1126/science.1112680.
  • Kumar S., Tamura K., Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163. DOI: 10.1093/bib/5.2.150.
  • Mishra J., Saxena A., Singh S. 2007. Chemotherapy of leishmaniasis: past, present and future. Current Medicinal Chemistry, 14, 1153–1169. DOI: 10.2174/092986707780362862.
  • Morty R.E., Fulop V., Andrews N.W. 2002. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 184, 3329–3337. DOI: 10.1128/JB.184.12.3329-3337.2002.
  • Morty R.E., Lonsdale-Eccles J.D., Morehead J., Caler E.V., Mentele R., Auerswald E.A., Coetzer T.H., Andrews N.W., Burleigh B.A. 1999. Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidase. Journal of Biological Chemistry, 274, 26149–26156.
  • Morty R.E., Pelle R., Vadasz I., Uzcanga G.L., Seeger W., Bubis J. 2005. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. Journal of Biological Chemistry, 280, 10925–10937. DOI: 10.1074/jbc.M410066200.
  • Morty R.E., Troeberg L., Pike R.N., Jones R., Nickel P., Lonsdale-Eccles J.D., Coetzer T.H.T. 1998. Trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Letters, 433, 251–256.
  • Mottram J.C., North M.J., Barry J.D., Coombs G.H. 1989. Acysteine proteinase cDNA from Trypanosoma brucei predicts an enzyme with an unusual C-terminal extension. FEBS Letters, 258, 211–215.
  • Notredame C., Higgins D.G., Heringa J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205–217.
  • Polgar L. 2002. The prolyl oligopeptidase family. Cellular and Molecular Life Sciences, 59, 349–362. DOI: 10.1007/s00018-002-8427-5.
  • Sadij M., McKerrow J.H. 2002. Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology, 120, 1–21. DOI: 10.1016/S0166-6851(01)00438-8.
  • Sambrook J., Russell D.W. 2001. Molecular cloning: A laboratory manual. Third edition. CSH Press, 1–33.
  • Shaw J. 2007. The leishmaniases — survival and expansion in a changing world. A mini-review. Memórias do Instituto Oswaldo Cruz, 102, 541–547.
  • Spath G.F., Beverley S.M. 2001. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Experimental Parasitology, 99, 97–103. DOI: 10.1006/expr.2001.4656.
  • Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. DOI: 10.1093/nar/22.22.4673.
  • Tolezano J.E., Uliana S.R.B., Taniguchi H.H., Araujo M.F.L., Barbosa J.A.R., Barbosa J.E.R., Floeter-Winter L.M., Shaw J.J. 2007. The first records of Leishmania (Leishmania) amazonensis in dogs (Canis familiaris) diagnosed clinically as having canine visceral leishmaniasis from Araçatuba County, Sao Paulo State, Brazil. Veterinary Parasitology, 149, 280–284. DOI: 10.1016/j.vetpar.2007.07.008.
  • Vermelho A.B., De-Simone S.G., d’Avila-Levy C.M., do Santos A.L.S., de Melo A.C.N., Silva F.P.Jr., Bon E.P.S., Branquinha M.H. 2007. Trypanosomatidae peptidases: A target for drugs development. Current Enzyme Inhibition, 3, 319–348.
  • Williams R.A., Kelly S.M., Mottram J.C., Coombs G.H. 2003. 3-Mercaptopyruvate sulfurtransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. Journal of Biological Chemistry, 278, 1480–1486. DOI: 10.1074/jbc.M209395200.
  • Wong J.Y, Harrop S.A., Day S.R., Brindley P.J. 1997. Schistosomes express two forms of cathepsin D. Biochimica et Biophysica Acta, 1338, 156–160.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2d4e6d0d-e584-44d4-9cc4-df74da8bd86c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.