PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 19 | 1 |

Tytuł artykułu

Biochemical impact of dominant extracts of Scots pine cuttings on germination

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The main objective of this study was to determine the allelopathic impact of dominant species (Calamagrostis epigeios, Rubus idaeus and Chamaenerion angustifolium) of clear-cuttings of Scots pine (Pinus sylvestris L.) forests (Vaccinio-myrtillo Pinetum) on test species germination emphasizing the forest ecosystem establishment. Aqueous extracts of roots and shoots were produced at different growth stages and assayed on germination. Additionally, total concentration of phenols was evaluated photo spectrometrically. Extracts of shoots more strongly inhibited germination than those of roots of all investigated species. The strongest inhibitory effect on germination and the highest phenol contents were documented during the flowering stage rather than in spring and autumn. Accordingly, to mean germination data the declining phytotoxicity sequence of the species was determined: R. idaeus > C. epigeios > Ch. angustifolium. Hence this study implied in allelopathic activity of species a potential suppressive factor that could influence germination and forest regeneration, but field condition studies are necessary.

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.35-42,fig.,ref.

Twórcy

  • Lithuanian University of Agriculture, LT-53361 Kaunas distr., Lithuania
autor

Bibliografia

  • 1. LALLJEE B., FACKUATH S., NARWALL S.S. (Ed), Hoagland R.E. (Ed), Dilday R.H. (ed), Reigosa M.J., Allelopathy in ecological agriculture and forestry. Proceedings of the 3rd International Congress on Allelopathy in Ecological Agriculture and Forestry, pp. 47-58, 2000.
  • 2. MEIER U. Growth stages of mono- and dicotiledonous plants: BBCH Monograph. Federal Biological Research Center of Agriculture and Forestry. Blackwell, Wissenschaftsverlag: Berlin and Wien, 2001.
  • 3. GRADECKAS A., MALINAUSKAS A. Subject and experience of greening propagation in Lithuania, Kaunas, pp. 97-100, 2005 [In Lithuanian].
  • 4. LOVETT J.H., Allelopathy: the Australian experience, in: A.R. Putnam and C.-S. Tang (Eds). The Science of Allelopathy, J. Wiley & Sons, N. York, pp. 75-99, 1986.
  • 5. SLINKARD K., SINGLETON V.L., Total phenol analyses: automation and comparison with manual methods, Am. J. Enol. Viticult., 28, 49, 1977.
  • 6. EINHELLIG F. A., Interacions Involving allelopathy in cropping systems, Agron. J., 88, 886. 1996.
  • 7. GALLET C., PELLISSIER F., Allelophathy in forest ecosystems. Rev. Forest. Franc., 56, 567, 2002.
  • 8. INDERJIT, MURAMATSU H., NISHIMURA H., On the Allelopathic Potencial of Certain Terpenoids, Phenolics and Their Mixtures and Their Recovery from Soil. Canad. J. of Bot., 75, 888, 1997.
  • 9. BLANCO J. A., The representation of allelopathy in ecosystem-level forest models, Ecologic. Modell., 209, 65, 2007.
  • 10. ANAYA A. L., Allelopathy as a Tool in the Management of Biotic Resources in Agroecosystems, Critical Rev. in Plant Sc., 18, 697, 1999.
  • 11. FOY CH. L., How to Make Bioassays for Allelopathy More Relevant to Field Conditions with Particular Reference to Cropland Weeds, Principles and Practices, in: Inderjit, K.M.M. Dakshini, Ch. L. Foy (Eds.). Plant Ecology: allelochemical interactions, CRC Press, Boca Raton, Fla, pp. 25-34, 2000.
  • 12. HUANG H., YE W., WEI X., ZHANG CH., Allelopathic potential of sesquiterpene lactones and phenolic constituents from Mikania micrantha H. B. K., Bioch. Syst. and Ecol., 36, (11), 867, 2008.
  • 13. BLUM U., SHAFER S. R., LEHMAN M. E., Evidence for Inhibitory Allelopathic Interactions Involving Phenolic Acids in Field Soils: Concepts vs. Experimental Model. Critic. Rev. of Plant Sc., 18, 673, 1999.
  • 14. CARLINI C. R., GROSSI de Sa F., Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides, Toxicon, 40, 1515, 2002.
  • 15. DONNELLY M. J., GREEN D. M., WALTERS L. J., Allelopathic Effects of the Brazilian Pepper Schinus terebinthifolius on Growth, Leaf Production and Biomass of Seedlings of the Red Mangrove Rhizophora mangle and the Black Mangrove Avicennia germinans, J. of Exp. Marine Biol. and Ec., 357, 149, 2008.
  • 16. INDERJIT, DAKSHINI K. M. M. Bioassays for Allelopathy: Interactions of Soils Organic and Inorganic Constituents, Principles and Practices. In: Inderjit, K. M. M. Dakshini, Ch. L. Foy (Eds.). Plant Ecology, Allelochemical Interaction, CRC Press, Boca Raton: Fla, pp. 35-44, 2000.
  • 17. MALLIK A.U. Conifer regeneration problems in boreal and temperate forest with ericaceous understory: role of disturbance, seedbed limitation, and keystone change. Crit. Rev. Plant Sci., 22, 341, 2003.
  • 18. MCKEY D., WATERMAN P.G., MBI C.N., GARTLON J. S., STRUBRAKER T.T., Phenolic content of vegetation in two African rain forests: ecological implications. Sc., 202, 61, 1978.
  • 19. WILLIANSON G. B., RICHARDSON D. R., FISCHER N.H. Allelopathic mechanism in fire-prone communities, in: S. J. H. Rizvi, V. Rizvi (Eds), Allelopathy: Basic and Applied Aspects, Chapman & Hall: London, pp. 57-75, 1992.
  • 20. Van ROOYEN M.W., THERON G.K., van ROOYEN N., JANKOWITZ W.J., MATTHEWS W.S., Mysterious circles in the Namib Desert: review of hypotheses on their origin, J. Arid. Env., 57, 467, 2004.
  • 21. CODER K. D., Potential Allelopathy in Different Tree Species, University of Georgia, Daniel B. Warnell School of Forest Resources, pp. 1-5, 1999.
  • 22. WU L., GUO X., HARIVANDI M. A., Allelopathic effects of phenolic acids detected in buffalograss (Buchloe dactyloides) clippings on growth of annual bluegrass (Poa annua) and buffalograss seedlings, Environ. Exper. Bot., 39, 159, 1998.
  • 23. NATHAN R., MULLER-LANDAU H.C., Spatial patterns of seed dispersal, their determinants and consequences for recruitment, Trends Ecol. and Evol., 15, 278, 2000.
  • 24. BROEKAERT W. F., CAMMUE B. P. A., DEBOLLE M. F. C., THEVISSEN K., DESAMBLANX G. W., OSBORN, R.W., Antimicrobial Peptides from Plants, Critical Rev. of Plant Sc., 16, 297, 1997.
  • 25. INDERJIT. Plant Phenolics in Allelopathy. Bot. Rev., 62, 186, 1996.
  • 26. LOUIS S., DELOBEL B., GRESSENT F., DUPORT G., DIOL O., RAHIOUI I., CHARLES H., RAHBE Y., Broad Screening of the Legume Family for Variability in Seed Insecticidal Activities and for the Occurrence of the A1blike Knottin Peptide Entomotoxins, Phytochem., 68, 521, 2007.
  • 27. RAGAN M., The Detection of Neighbors by Plants, Trends Ecol. and Evol., 17, 104, 2002.
  • 28. GRODZINSKY A. M. Allelopathy and Productivity of Plants. Naukova Dumka: Kijev, 1990.
  • 29. INDERJIT, Experimental Complexities in Evaluating the Allelopathic Activities in Laboratory Bioassays: A Case Study. Soil Biol. and Bioch., 38, 256, 2006.
  • 30. WEIDENHAMER J. D., Distinguishing Resource Competition and Chemical Interference, Agron. J., 88, 866, 1996.
  • 31. ORR S. P., RUDGERS J. A., CLAY K., Invasive Plants Can Inhibit Native Tree Seedlings: Testing Potential Allelopathic Mechanisms, Plant Ecol., 181, 153, 2005.
  • 32. MACIAS F. A., GALINDO J. L. G., GALINDO J. C. G., Evolution and current status of ecological phytochemistry. Phytochem., 68, 2917, 2007.
  • 33. DJURDJEVIĆ L., MITROVIĆ M., DINIĆ A., PAVLOVIĆ P., BOJOVIĆ S., GAJIĆ G., KOSTIĆ O., Allelopathic investigations of Quercus conferta and Quercus cerris domination in oak forest at Avala Mt. (Serbia). Proc. of the 4th World Congress on Allelopathy, pp. 28-31, 2005.
  • 34. INDERJIT, NILSEN E. T., Bioassays and Field Studies for Allelopathy in Terrestrial Plants: Progress and Problems, Critic. Rev. in Plant Sc., 22, 221, 2003.
  • 35. KAIRIŪKŠTIS L., JUODVALKIS A., The Theoretical Fundamentals of Forming of the Most Productive Stands, Balt. Forest., 11, (2), 38, 2005.
  • 36. INDERJIT, MALICK A.U., Effect of Phenolic Compounds on Selected Soil Properties, Forest Ecol. Manag., 92, 11, 1997.
  • 37. VANCE G. F., MOKMA D. L. BOYD S. A., Phenolic Compounds in Soil of Hydrosequences and Developmental Dequences of Podzols, Soil Sc. Soc. Am. J., 50, 992, 1986.
  • 38. WU H., PRATLEY J., HAIG T., Phytotoxic Effects of Wheat Extracts on a Herbicide-Resistant Biotype of Annual Ryegrass (Lolium rigidum), J. Agric. and Food Chem., 51, 447, 2003.
  • 39. KRYZEVICIENE A., PAPLAUSKIENE V., Allelopathic Activity of Perennial Grasses at Different Development Stages, Agricult., 4, 179, 2002.
  • 40. KARAZIJA S. Types of Lithuanian forests, Vilnius: Mokslas, pp. 78-80, 132-135, 1988 [In Lithuanian].
  • 41. JERMAKOV A. I., BOGOTOVA M. T., SAMORODOVA G. B. Methods of Determining Chemical Composition of Forage Plants, Nauka: Leningrad, pp. 276, 1976 [In Russian].
  • 42. BALEŽENTIENĖ L., SAMPIETRO D.A., Allelopathic potential of fodder galega at different growth stages, Allelop. J., 23, (1), 229, 2009.
  • 43. BONG-SEOP K. Effect of pine allelochemicals on selected species in Korea, in: S.J.H. Rizvi, V. Rizvi, Eds., Allelopathy: Basic and Applied Aspects, Chapman & Hall, London, pp. 204-241, 1992.
  • 44. CHUNG I. M., MILLER D. A., Differences in autotoxicity among 7 alfalfa cultivars, Agron. J., 87, 596, 1995.
  • 45. FERNANDEZ C., VOIRIOT S., MEVY J.-P., VILA B., ORMENO E., DUPOUYET S., BOUSQUET-MELOU A. Regeneration failure of Pinus halepensis Mill.: the role of autotoxicity and some abiotic environmental parameters, Forest Ecol. and Manag., 255, 2928, 2008.
  • 46. SAMPIETRO D.A., VATTUONE M.A., ISLA M.I., Plant growth inhibitors isolated from sugar cane (Saccharum officinarum) straw, J. Plant Physiol., 163, 837, 2006.
  • 47. UTSUGI H., KANNO E., UENO N., TOMITA M., SAITOH T., KIMURA M., KANOU K. SEIWA K., Hardwood recruitment into conifer plantations in Japan: effects of thinning and distance from neighboring hardwood forests, Forest Ecol. Manage, 237, 15, 2006

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2cf2e5d5-5aef-4940-8f50-8c44836d654f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.