PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 08 | 6 |

Tytuł artykułu

Dynamics of daily changes in the intensity of photosynthesis and starch content in lilac leaves [Syringa vulgaris L.]

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Investigations were carried out in July on leaves of lilac variously situated in the head on the crown. Net photosynthesis was registered from 6 hr to 20 hr. The insolated leaves in the top part of the crown showed maximum photosynthesis between 8 hr and 11 hr, afterwards the intensity of photosynthesis decreasing in spite of the high intensity of irradiation in the midday hours. The insolated leaves located in the lower part of the crown showed maximum photosynthesis at the time of the greatest incident irradiation of the leaf. Shaded leaves, inside the crown, demonstrated the highest net photosynthesis between 8 hr and 15 hr. This amounted to about 20% of the maximum photosynthesis of insolated leaves. Starch was present in the leaves both during the day and night. Before sunrise starch represented 6% of the dry weight of insolated leaves and 3% of the shaded leaves. In the insolated leaves since sunrise its content quickly increased up to 13-14% and remained at a slightly decreasing level till evening hours. Sunset was followed by a rapid decrease in the starch content in the leaves. In the shaded leaves, throughout day, the starch content remained at a constant level (3%). Intensive photosynthesis of the lilac leaves causes a great accumulation of starch in the insolated leaves during the day. It is the main cause of reduction in the intensity of photosynthesis.

Wydawca

-

Rocznik

Tom

08

Numer

6

Opis fizyczny

p.417-423,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Slawkowska 17, 31-016 Krakow, Poland

Bibliografia

  • 1.ARO E. M., VALANNE N., Effect of continuous light on CO2 fixation and chloroplast structure of the mosses Pleurozium schreberi and Ceratodon purpureus. Physiol. Plant. 43, 460, 1979.
  • 2.BAKER J. T., ALLEN L. H. Jr., Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus. Vegetatio 104/105, 293, 1993.
  • 3.CARPETIER R., Influence of high light intensity on photo synthesis: photoinhibition and energy dissipation. In: M. Pes- sakali (ed) Handbook of photosynthesis. Marcel Dekker, Inc. New York, Basel, Hong Kong, 443-450, 1997.
  • 4.CRANSWICK A. M., ROOK D. A., ZABKIEWICZ J. A. Seasonal changes in carbohydrate concentration and composi tion of different tissue types of Pinus radiata trees N. Z. J. For. Sci. 17, 229, 1987.
  • 5.CZARNOWSKI M., STARZECKI W., The relationship bet ween photosynthesis and starch accumulation in tomato lea ves. Bull. Pol. Acad. Sci. Biol. Sci. 37, 217, 1989.
  • 6.CZOPEK M. STARZECKI W., A field laboratory for photo synthesis measurement. Bui. Acad. Pol. Scie. Ser. Sci. Biol. 18, 657, 1970.
  • 7.DEMMING-ADAMS B., ADAMS W. W. Ill, WITER K., MEYER A., SCGREIBER U., PEREIRA J., KRUGER A., CZYGAN F-C, LANGE O. L., Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday de pression of net CO2 uptake in Arbutus unedo growing in Por tugal. Planta, 377, 1989.
  • 8.DIETZ K-J, KELLER F., Transient storage of photosynthates in leaves. In: M. Pessakali (ed) Handbook of photosynthesis. Marcel Dekker, Inc. New York, Basel, Hong Kong, 717-737, 1997.
  • 9.ERICSSON A., Effects of fertilization and irrigation on the seasonal changes of carbo-hydrate reserves indifferentage-classes of needle on 20-year-old scots pine trees (Pinus silvestris). Physiol. Plant. 45, 270, 1978.
  • 10.GHASHGHAIE J., CORNIC G., Effect of temperature on par titioning of photosynthetic electron flow between CO2 assimi lation and O2 reduction and on the CO2/O2 specificity of rubisco. J. Plant Physiol. 143, 643, 1994.
  • 11.GRAVES A.J., BUWALDA J.G., Observations of diurnal de cline of photosynthetic gas exchange in kiwifruit and the ef fect of external CO2 concentration. New Zealand J. Crop and Hort. Sci. 24, 361, 1996.
  • 12.HAAPALA H., Photosynthesis and starch metabolism of chloroplasts during prolon-ged illumination. Planta (Berl.) 86, 259, 1989.
  • 13.LAYNE D.R., FLORE J.A., Physiological response ofPrunus cerasus to whole-plant source manipulation. Leaf gas ex change, chlorophyll fluorescence, water relation and carbohy drate concentrations. Physiol. Plant. 88, 44, 1993.
  • 14.MADSEN E., Effect of CO2 - concentration on the accumula tion of starch and sugar in tomato leaves. Physiol. Plant. 21, 168, 1968.
  • 15.NILSEN E. T., Partitioning growth and photosynthesis be tween leaves and stems during nitrogen limitation in Spartium junceum. Amer. J. Bot. 79, 1217, 1992.
  • 16.PILARSKI J., Ultrastructure of chloroplasts in the bark and leaves of lilac (Syringa vulgaris). Acta Physiol. Plant. 15, 241, 1993.
  • 17.PILARSKI J., The effect of CO2 concentration on gas exchan ge in shoots and leaves of lilac (Syringa vulgaris). Acta Physiol. Plant. 16, 105, 1994.
  • 18.PILARSKI J., Dynamics of seasonal changes of starch con tent, in the shoots and leaves of lilac. Acta Physiol. Plant. 17, 295, 1995.
  • 19.PILARSKI J. Relation between solar irradiation, temperature and the photochemical activity of chloroplasts isolated from the bark and leaves of lilac (Syringa vulgaris). Pol. J. En- vironm. Stud. 6, 53, 1997.
  • 20.RASCHKE K., RESEMANN A. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in tem perature and humidity. Planta 168, 546, 1986.
  • 21.ROSE R., ROSE C. L., OMI R. S., FORRY K. R., DURALL D. M., BIGG W. L., Starch determination by perchloric acid vs. enzymes: evaluating the accuracy and precision of six co- lorimetric methods. J. Agric. Food Chem. 39, 2, 1991.
  • 22.SAGE R. F., SANTRUCEK J, GRISE D. J.,Temperature effects on the photosynthetic response of C3 plants to long-term CO2 enrichment. Vegetatio 121, 67, 1975.
  • 23.STIIT M., HUBER S., KERR P., Control of photosynthetic sucrose formation. In: The biochemistry of plants. P. K. Stumpf and E. E. Conn, (eds) vol. 10 Photosynthesis. M. D. Hatch and N. K. Boardman (eds), Academic Press, Inc. San Diego, New York: 327 - 409, 1987.
  • 24.TENHUNEN J. D., LANGE O. L., GEBEL J., BEYSCHLAG W., WEBER J. A. Changes in photosynthetic capacity, car- boxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber. Planta 162, 193, 1984.
  • 25.THORNE J. H., KOLLER H. R., Influence of assimilate de mand on photosynthesis, diffusive resistances, translocation, and carbohydrate levels of soybean leaves. Plant Physiol. 54, 201, 1974.
  • 26.WEBB W. L. Starch content of conifers defoliated by the douglasfir tussock moth. Can. J. For. Res. 10, 535, 1980.
  • 27.WEBB W. L., KARCHESY J. J., Starch content of Douglasfir defoliated by the tussock moth. Can. J. For. Res. 7, 186, 1977.
  • 28.WEBB W. L., KILPATRICK K. J., Starch content in diurnal and seasonal dyna-mics. Forest Sic. 39, 359, 1993.
  • 29.Xu D-Q., SHEN Y-K., Midday depression of photosynthesis. In: M. Pessakali (ed) Handbook of photosynthesis. Marcel Dekker, Inc. New York, Basel, Hong Kong, 451-459, 1997.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2bf342c5-984d-4e4b-8ca9-f8908be6b2a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.