PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 60 | 1 |

Tytuł artykułu

EEG analysis with nonlinear deterministic and stochastic methods: a combined strategy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We describe nonlinear deterministic versus stochastic methodology, their applications to EEG research and the neurophysiological background underlying both approaches. Nonlinear methods are based on the concept of attractors in phase space. This concept on the one hand incorporates the idea of an autonomous (stationary) system, on the other hand implicates the investigation of a long time evolution. It is an unresolved problem in nonlinear EEG research that nonlinear methods per se give no feedback about the stationarity aspect. Hence, we introduce a combined strategy utilizing both stochastic and nonlinear deterministic methods. We propose, in a first step to segment the EEG time series into piecewise quasi-stationary epochs by means of nonparametric change point analysis. Subsequently, nonlinear measures can be estimated with higher confidence for the segmented epochs fullfilling the stationarity condition.

Wydawca

-

Rocznik

Tom

60

Numer

1

Opis fizyczny

p.87-108,fig.

Twórcy

autor
  • University of Mainz, Untere Zahlbacherstr.8, D-55101 Mainz, Germany
autor
autor

Bibliografia

  • Achermann P., Hartmann R., Gunzinger A., Guggenbuhl W., Borbely A.A. (1994) All night sleep EEG and artificial sto­chastic control signals have similar correlation dimensions. Electroencephalogr. Clin. Neurophysiol. 90: 384-387.
  • Aftanas L.I., LotovaN.V., Koshkarov V.I., Pokrovskaja V.L., Popov S.A., Makhnev V.P. (1997) Non-linear analysis of emotion EEG: calculation of Kolmogorof entropy and the principal Lyapunov exponent. Neurosci. Lett. 226: 13-16.
  • Aihara K., Matsumoto G. (1986) Forced oscillations and bi­furcations in squid giant axons. In: Chaos. Nonlinear science: theory and applications (Ed. A.V. Holden). Man­chester Univ. Press, Manchaster, p. 257-269.
  • Aihara K., Matsumoto G. (1987) Forced oscillations and routes to chaos in the Hodgkin-Huxley axons and squid giant axons. In: Chaos in biological systems (Eds. H. Degn, A. Holden and L.F. Olsen). Plenum, New York, p. 121-131.
  • Amir N., Gath I. (1989) Segmentation of EEG during sleep using time-varying autoregressive modeling. Biol. Cybern. 61:447-455.
  • Aufrichtig R., Pedersen S.B., Jennum P. (1991) Adaptive seg­mentation of EEG signals. Ann. Int. Conf. of the IEEE Eng. Med. Biol. Soc. Proc. Biol. Signals 13: 453.
  • Barlow J.S. (1985) Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a com­parative review. J. Clin. Neurophysiol. 2: 267-304.
  • Basar E. (Ed.) (1990) Chaos in brain function. Springer, Ber­lin.
  • Basar E., Bullock T.H. (1992) Induced rhythms in the brain. Birkhauser, Boston.
  • Besthorn C., Zerfass R., Geiger-Kabisch C., Sattel H., Da­niel S., Schreiter-Gasser U., Forstl H. (1997) Discrimi­nation of Alzheimers disease and normal aging by EEG data. Electroencephalogr. Clin. Neurophysiol. 103: 241­248.
  • Biscay R., Lavielle M., Gonzalez A., Clark I., Valdes P. (1995) Maximum a posteriori estimation of change points in the EEG. Int. J. Bio-Med. Comput. 38: 189-196.
  • Bodenstein G., Praetorius H.M. (1977) Feature extraction from the electroencephalogram by adaptive segmentation. Proc. IEEE 65: 642-652.
  • Bodenstein G., Schneider W., Van der Malsburg C. (1985) Computerized EEG pattern- classification by adaptive seg­mentation and probability density function classification. Description of the method. Comput. Biol. Med. 15: 297­313.
  • Brodsky B.E., Darkhovsky B.S. (1989) Nonparametric meth­ods of detection of the switching instants of two random se­quences. Automat. Rem. Contr. 50: 1356-1363.
  • Brodsky B.E., Darkhovsky B.S. (1993a) An algorithm of aposteriori detection of repeated disorders of random se­quence (in Russian). Avtomatika i Telemekhanika 1: 62­67.
  • Brodsky B.E., Darkhovsky B.S. (1993b) Nonparametric methods in change-point problems. Kluver Acad. Publ., Dordrecht (the Netherlands).
  • Chaitin G. (1975) Randomness and mathematical proof. Sci. Am. 232:47-52.
  • Christini D.J., Collins J.J. (1995) Controlling nonchaotic neuronal noise using chaos control techniques. Phys. Rev. Lett. 75: 2782-2785.
  • Creutzfeld O.D. (1983) Cortex cerebri. Springer, Berlin.
  • Creutzfeldt O.D., Bodenstein G., Barlow J.S. (1985) Compu­terized EEG pattern classification by adaptive segmenta­tion and probability density function classification. Clinical evaluation. Electroencephalogr. Clin. Neurophy­siol. 60: 373-393.
  • Darkhovsky B.S. (1976) A nonparametric method for detec­tion of the "disorder" time of a sequence of independent random variables. Theor. Prob. Appl. 21:178-183.
  • Darkhovsky B.S. (1984) On two estimation problems for times of change of the probabilistic characteristics of a ran­dom sequence. Theor. Prob. Appl. 29: 478-488.
  • DeistlerM., ProhaskaO., ReschenhoferE., VollmerR. (1986) Procedure for identification of different stages of EEG background activity and its application to the detection of drug effects. Electroencephalogr. Clin. Neurophysiol. 64: 294-300.
  • Duffy F.N. (1986) Topographic mapping of electrical brain activity. Bitterworths, Boston.
  • Dumermuth H.G., Molinari L. (1987) Spectral analysis of the EEG. Neuropsychobiology 17: 85- 99
  • Elbert T., Lutzenberger W., Rockstroh B., Berg P., Cohen R. (1992) Physical aspects of the EEG in schizophrenics. Biol. Psychiat. 32: 595-606.
  • Elbert T., Ray W.J., KowalikZ.J., Skinner J.E., Graf K.E., Bir- baumer N. (1994) Chaos and Physiology: deterministic chaos in excitable cell assemblies. Physiol. Rev. 74:1-47.
  • Ehlers C.L., Havstad J.W., Garfinkel A., Kupfer D.J. (1991) Nonlinear analysis of EEG sleep states. Neuropsychophar- macology5: 167-176.
  • Farmer J.D., Ott E., Yorke J.A. (1983) Dimension of chaotic attractors. Physica D, 7: 153-180.
  • Feigenbaum M.J. (1978) Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19: 25-52.
  • Fell J., Beckmann P. (1994) Resonance like phenomena in Ly apuno v-calculations from data reconstructed by the time delay method. Phys. Lett. A 190: 172-176.
  • Fell J., Röschke J., Beckmann P. (1993). Deterministic chaos and the first positive Lyapunov- exponent: a nonlinear ana­lysis of the human electroencephalogram during sleep. Biol. Cybern. 69: 139-146.
  • Fell J., Röschke J., Mann K., Schaffner C. (1996) Discrimi­nation of sleep stages: a comparison between spectral and nonlinear EEG measures. Electroencephalogr. Clin. Neu­rophysiol. 98:401-410.
  • Fell J., Röschke J., Schaffner C. (1996) Surrogate data ana­lysis of sleep Electroencephalograms reveals evidence for nonlinearity. Biol. Cybern. 75: 85-92.
  • Felleman D.J., Van Essen D.C. (1991) Distributed hierarchi­cal processing in the primate cerebral cortex.. Cereb. Cor­tex 1: 1-47.
  • Frank G.W., Lookman T., Nerenberg M.A.H., Essex C., Le- mieux J., Blume W. (1990). Chaotic time series analyses of epileptic seizures. Physica D 46: 427-438.
  • Gath I., Lehmann D., Bar-On E. (1983) Fuzzy clustering of the EEG signal and vigilance performance. Int. J. Neurosci. 20: 303-312.
  • Gath I., Michaeli A., Feuerstein C. (1991) A model for dual channel segmentation of the EEG signal. Biol. Cybern. 64: 225-230.
  • Giese D.A., Bourne J.R., Ward J.W. (1979) Syntactic analysis of the electroencephalogram. IEEE Trans. Syst. Man. Cybern. 9: 429-435.
  • Grassberger P., Proccacia I. (1983). Characterization of strange attractors. Phys. Rev. Lett. 50: 346-349.
  • Grassberger P., Schreiber T., Schaffrath C. (1991). Nonlinear time sequence analysis. Int. J. Bifurcation Chaos 1: 521­547.
  • Gray C.M., König P., Engel A.K., Singer W. (1989) Oscilla­tory responses in cat visual cortex exhibit intercolumnar synchronisation which reflects global stimulus properties. Nature 338: 334- 337.
  • Haken H. (1983) At least one Lyapunov-exponent vanishes, if the trajectory of an attractor does not contain a fixed point. Phys. Lett. A 94: 71-72.
  • Harii R., Lounasmaa O.V. (1989) Recording and interpreta­tion of cerebral magnetic fields. Science 244: 432-436.
  • Harner R. (1977) EEG analysis in the time domain. In: EEG informatics: a didactic review of methods and applications of EEG data processing (Ed. A. Remond) Elsevier, Amster­dam.
  • Hayashi H., Ishiyuka M., Hiarawaka K. (1983) Transitions to chaos via intermittency in the onchidium pacemaker neu­ron. Phys. Lett. 98: 474-476.
  • Hayashi H., Ishiyuka M., Ohta M., Hirakawa K. (1982) Chaotic behavior in the onchidium giant neuron under sinusoidal stimulation. Phys. Lett. 88: 435-438.
  • Heagy J.F., Hammel S.M. (1994) The birth of strange non- chaotic attractors. PhysicaD 70: 140- 153.
  • Hodgkin A., Huxley A.F. (1952) A quantitative description of membrane current and application to conduction and exci­tation in nerve. J. Physiol. Lond. 117: 500-544.
  • Holden A.V., Winlow W., Haydon P.G. (1982) The induction of periodic and chaotic activity in a molluscan Lymnaca stagnalis neuron. Biol. Cybern. 43: 169-174.
  • Iasemidis L.D., Sackellares J.C. (1991). The evolution with time of the spatial distribution of the largest Lyapunov-ex- ponent on the human epileptic cortex. In: Measuring chaos in the human brain (Eds. W.S. Pritchard and D.W. Duke). World Scientific, Singapore, p. 49-82.
  • Ihl R., Dierks T., Froelich L., Martin E.M., Maurer K. (1993) Segmentation of the spontaneous EEG in dementia of the Alzheimer type. Neuropsychobiology 27: 231-236.
  • Jagannathan V., Bourne J.R., Jansen B.H., Ward J.W. (1982) Artificial intelligence methods in quantitative electroence­phalogram analysis Comp. Prog. Biomed. 15: 249-258.
  • Jansen B.H. (1986) "Is it?" and "So what?" - a critical view of EEG chaos. In: Measuring chaos in the human brain (Eds. W.S. Pritchard and D.W. Duke). World Scientific, Singa­pore, p. 83- 96.
  • Jansen B.H., Hasman A., Lenten R. (1981a) Piece-wise ana­lysis of EEG using AR-modeling and clustering. Comput. Biomed. Res. 14: 168-178.
  • Jansen B.H., Hasman A., Lenten R. (1981b) Piece-wise EEG analysis: an objective evaluation. Int. J. Bio-Med. Comput. 12: 17-27.
  • John E.R. (1977) Neurometries: clinical applications of quan­titative electrophysiology. Wiley, New York.
  • John E.R., Prichep L., Easton P. (1987) Normative data banks and Neurometries. Basic concepts, methods and results of norm constractions - In: Handbook of electroencephalo­graphy and clinical neurophysiology (Eds. P.S. Gevins and A. Remond). Elsevier, Amsterdam, p. 449-495.
  • Kaplan A.Y., Darkhovsky B.S., Fingelkurts A.A., Fingelkurts A.A. (1997a) Topological mapping of the sharp transfor­mation synchronization EEG (in Russian). J. Hig. Nerv. Act. 47: 32-37.
  • Kaplan A.Y., Darkhovsky B.S., Roeschke J. (1997b) Micro­structure of the sleep stages: state-shift analysis of the EEG
  • in humans. In: Proceeding of XXXIII Int. Congress of Physiological Sciences St. Peterburg 5: P104.11
  • Kaplan D.T., Glass L. (1992) Direct test for determinism in a time series. Phys. Rev. Lett. 68:427-430.
  • Koester J. (1991) Voltage-gated ion channels and the gener­ation of the action potential. In: Principles of neural science (Eds. E.R. Kandel, J.H. Schwartz and T.M. Jessel). Pren­tice-Hall International. 3 Edition, p. 104-118.
  • Kohonen T. (1990) The self-organizing map. Proc. IEEE 78: 1464-1480.
  • Kookkou M., Lehmann D., Wackermann J., Dvorak I., Henggeler B. (1992) Dimensional complexity of EEG brain mechanisms in schizophrenia. Biol. Psychiat. 33: 397-407.
  • Kowalik Z.J., Elbert T. (1994) Changes of chaoticness in spontaneous EEG/MEG. Integr. Physiol. Behav. Sci. 29: 270-282.
  • Kowalik Z.J., Elbert T. (1995) A practical method for the measurement of the chaoticity of electric and magnetic brain activity. Int. J. Bifurcation Chaos 5: 475-490.
  • Lasota A., Mackey M.C. (1993) Chaos, fractals, and noise. Stochastic aspects of dynamics. Second edition. Springer­Verlag, Applied Mathematical Sciences, v. 97.
  • Lauterborn W., Holzfuss J. (1991) Acoustic chaos. Int. J. Bi­furcation Chaos 1: 13-26.
  • Lehmann D., Ozaki H., Pal I. (1987) EEG alpha map series: brain microstates by space-oriented adaptive segmenta­tion. Electroencephalogr. Clin. Neurophysiol. 67: 271­288.
  • Lehmann D., Wackermann J., Michel C.M., Koenig T. (1993) Space-oriented EEG segmentation reveals changes in brain electric field maps under the influence of a nootropic drug. Psychiat. Res. 50: 275-282.
  • Lehnertz K., Elger C.E. (1995) Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroence­phalogr. Clin. Neurophysiol. 95: 108-117.
  • Lopes da Silva F.H. (1975). Analysis of nonstationary elec­troencephalograms. In: Quantitative analysis of the EEG (Eds. M. Matejcek and G.K. Schenk). AEG Telefunken, Konstanz, p. 421-433.
  • Lorig T.S. (1986) EEG and task performance: a comparison of three analytic techniques. Physiol. Psychol. 14: 130­132.
  • Lorig T.S., Schwartz GE (1989). Factor analysis of the EEG indicates inconsistencies in traditional frequency bands. J. Psychophysiol. 3: 369-375.
  • Lutzenberger W., Elbert T., Ray W.J., Birbaumer N. (1993) The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks. Brain Topogr. 5: 27-34.
  • Makeig S., Jung T.P. (1995) Changes on alertness are a prin­cipal component of variance in the EEG spectrum. Neur­oreport 7: 213-216.
  • Mann K., Roschke J., Backer P. (1993) Investigations of the dynamical properties of the sleep EEG in different fre­quency bands. Int. J. Neurosci. 73: 161-169.
  • Manneville P., Pomeau Y. (1979) Intermittency and the Lor­enz model. Phys. Lett. A 75: 1.
  • Matsumoto G., Aihara K., Hanyu Y., Takahashi N., Yoshiza- wa S., Nagumo J. (1987) Chaos and phase-locking in nor­mal squid axons. Phys. Lett. 123: 162-166.
  • Mc Ewen J.A., Anderson G.B. (1975) Modeling the station­ary and Gaussianity of spontaneous electroencephalo- graphic activity. IEEE T. Bio-Med. Eng. 22: 361-369.
  • Merrin E., Meek L.P., Floyd T.C., Callaway E. (1990) To­pographic segmentation of waking EEG in medication- free schizophrenic patients. Int. J. Psychophysiol. 9:231-236.
  • Meyer-Lindenberg A. (1996) The evolution of complexity in human brain development: an EEG study. Electroencepha- logr. Clin. Neurophysiol. 99: 405-411.
  • Michael D., Houchin J. (1979) Automatic EEG analysis: a segmentation procedure based on the autocorelation function. Electroencephalogr. Clin. Neurophysiol. 46: 232-235.
  • Moussavi Z.M.K., Rangaraj R.M., Bell G.D., Frank C.B., Ladly K.O., Zhang Y.T. (1996) Screening of vibroarthro- graphic signals via adaptive segmentation and linear predi- ation modelling. IEEE T. Bio-Med. Eng. 43: 15-23.
  • Newhouse S., Ruelle D., Takens F. (1978) Occurence of strange axiom-a attractors near quasiperiodic flow on Tm, m < 3. Commun. Math. Phys. 64: 35-40.
  • Nuwer M.R. (1988) Quantitative EEG: I. Techniques and problems of frequency analysis and topographic mapping. J. Clin. Neurophysiol. 5: 1-43.
  • Osborne A.R., Provencale A. (1989) Finite correlation dimen­sion for stochastic systems with power-law spectra. Physi- caD 35: 357-381.
  • Ott E., Grebogi C., Yorke J.A. (1990) Controlling chaotic dy­namical systems. In: Chaos/Xaoc - Soviet-American per­spectives on nonlinear science (Ed. K. Campbell). American Institute of Physics p. 153-171.
  • Palus M. (1996) Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol. Cybern. 75: 389-396.
  • Parker T.S., Chua C.O. (1989) Practical numerical algorithms for chaotic systems. Springer, New York.
  • Pascual-Marqui R.D., Michel C.M., Lehmann D. (1995) Seg­mentation of brain electrical activity into microstates: model estimation and validation. IEEE T. Bio-Med. Eng. 42: 658-665.
  • Penczek P., Grochulski W., Grzyb J., Kowalczyk M. (1987) The use of multi-channel Kalman filter algorithm in struc­tural analysis of the epileptic EEG.Int. J. Bio-Med Comput. 20: 135- 151.
  • Pijn J.P., Velis D.N., van der Heyden M.J., DeGoede J., van Veelen C.W., Lopes da Silva F.H. (1997) Nonlinear dyna­mics of epileptic seizures on basis of intracranial EEG rec­ordings. Brain. Topogr. 9: 249-270.
  • Pradhan N., Sadasivan P.K. (1996) The nature of dominant Lyapunov exponent and attractor dimension curves of EEG in sleep. Comput. Biol. Med. 26: 419-428.
  • Pregenzer M., Pfurtscheller G., Flotzinger D. (1994) Auto­mated feature selection with a distinction sensitive learning vector quantizer. Neurocomputing 11: 19-29.
  • Preissl H., Lutzenberger W., Pulvermliller F., Birbaumer N. (1997) Fractal dimensions of short EEG time series in hu­mans. Neurosci. Lett. 225: 77-80.
  • Pritchard W.S., Duke D.W. (1997) Segregation of the tha­lamic alpha rhythms from cortical alpha activity using the Savit-Green S-statistic and estimated correlation dimen­sion. Int. J. Psychophysiology 26: 263-271.
  • Pritchard W.S., Duke D.W. (1992) Dimensional analysis of no-task human EEG using the Grassberger-Procaccia method. Psychophysiol. 29: 182-192.
  • Pritchard W.S., Duke D.W., Coburn K.L., Moore N.C., Tucker K.A., Jann M.W., Hostetler R.M. (1994) EEG- based, neural-net predictive classification of Alzheimers disease versus control subjects is augmented by non-linear EEG measures. Electroencephalogr. Clin. Neurophysiol. 91: 118-130.
  • Pritchard W. S., Duke D. W., KriebleK.K. (1995) Dimensional analysis of resting human EEG. II. Surrogate-data testing indicates nonlinearity, but not low-dimensional chaos. Psy­chophysiology 32: 486-491.
  • Rapp P.E., Albano A.M., Zimmerman I.D., Jimenez-Montao M.A. (1994) Phase-randomized surrogates can produce spurious identification of non-random structure. Phys. Lett. A. 192: 27-33.
  • Rechtschaffen A., Kales A. (1968) A manual of standardized terminology, technics and scoring system for sleep stages of human subjects. Public Health Service, NIH Publication No.204, W Washington,D.C., US Government Printing Office.
  • Renyi A. (1971) Probability theory. North Holland, Amster­dam.
  • Reschenhofer E., Vollmer R., Deistler M. (1987) Segmenta­tion of the EEG by minimization of the total gain in infor­mation. Neuropsychobiology 18: 155-159.
  • Rombouts S.A.R.B., Keunen R.W.M., Stam C.J. (1995) In­vestigation on nonlinear structure in multichannel EEG. Phys. Lett. A 202: 352-358.
  • Roschke J., Aldenhoff J.B. (1991). The dimensionality of human's Electroencephalogram during sleep. Biol. Cybern. 64: 307-313.
  • Roschke J., Aldenhoff J.B. (1993) Estimation of the dimen­sionality of sleep-EEG data in schizophrenics. Eur. Arch. Psy. Clin. N. 242: 191-196.
  • Roschke J., Fell J., Beckmann P. (1995a) Nonlinear analysis of sleep EEG in depression: calculation of the largest Lyapunov exponent. Eur. Arch. Psy. Clin. N. 245: 27-35.
  • Röschke J., Fell J., Beckmann P. (1995b) Nonlinear analysis of sleep EEG in schizophrenia: calculation of the principal Lyapunov exponent. Psychiat. Res. 56:257-269.
  • Sammer G. (1996) Working-memory load and dimensional complexity of the EEG. Int. J. Psychophysiol. 24:173-182.
  • Sanderson A.C., Segen J., Richey E. (1980) Hierarchical mode­ling of EEG signals. IEEE T. Pattern Anal. 2:405-415.
  • Schiff S.J., Jerger K., Duong D.H., Spano M.L., Ditto N.L. (1994) Controlling chaos in the brain. Nature 370: 615­620.
  • Sharp F., Smith G., Survillo W. (1975) Period analysis of the electroencephalogram with recordings of interval histo­grams of EEG half-wave duration. Psychophysiology 12: 471-479.
  • Shishkin S.L., Brodsky B.E., Darkhovsky B.S., Kaplan A.Y. (1997). EEG as nonstationary signal: the approach to ana­lysis on the base of nonparametric statistics (in Russian). J. Human Physiol. 23: 124-126.
  • Skrylev K.M. (1984) A method of analysis of abrupt changes in the EEG rhythm (in Russian). Human Physiol. 10: 333­336.
  • Stam C.J., Jelles B., Achtereekte H.A., van-Birgelen J.H., Slaets J.P. (1996) Diagnostic usefulness of linear and non­linear quantitative EEG analysis in Alzheimers disease. Clin. Electroencephalogr. 27: 69-77.
  • Stam C.J., van Woerkom T.C., Pritchard W.S. (1996) Use of non-linear EEG measures to characterize EEG changes during mental activity. Electroencephalogr. Clin. Neuro- physiol. 99: 214-224.
  • Takens F. (1981) Detecting strange attractors in turbulence. Lecture notes in mathematics (898). Springer, Berlin.
  • Theiler J. (1986). Spurious dimensions from correlation algo­rithms applied to limited time-series data. Phys. Rev. A 34: 2427.
  • Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.D. (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58: 77-94.
  • Wolf A., Bessoir T. (1991). Diagnosing chaos in the space circle. Physica D 50: 239-258.
  • Wolf A., Swift J.B., Swinney H.L., Vastano J. A. (1985) Deter­mining Lyapunov exponents from a time series. Physica D 16: 285-317.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2beb53d9-e43d-4acb-bef9-a5b11f71ad3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.