PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 1 |

Tytuł artykułu

Composition of picocyanobacteria community in the Great Mazurian Lakes: isolation of phycoerythrin-rich and phycocyanin-rich ecotypes from the system - comparison of two methods

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study showed that the picocyanobacteria community of the Great Mazurian Lakes system (GML) was dominated by phycoerythrin-rich (PE) ecotypes and demonstrated a gradual decrease of the ratio between PE and phycocyanin-rich (PC) ecotypes. The Great Mazurian Lakes offer better conditions for the PE ecotype than for the PC one, despite the considerably high trophic status, probably thanks to low turbidity and attenuation of light in the water column. The successful isolation of PE and PC picocyanobacteria was achieved by two methods: the classic plate method and a modified flow-cytometry method. The modified flow-cytometry method proved to be superior: being more selective for PE picocyanobacteria as well as less time consuming and less laborious. The modifications introduced to the method, such us concentration of cyanobacterial cells by centrifugation to the density required by the flow cytometer, did not hinder the isolation while allowing to skip an intermediate phase of enrichment cultures that had been formerly proposed. The first phylogenetic analyses based on cpcBA operon and 16S rRNA gene demonstrated that picocyanobacteria isolates from GML could, with a high bootstrap support, be grouped into five and four clusters, respectively. Based on a cpcBA-IGS analysis and IGS length the study suggests that at least one of the clusters is new and has not been previously described.

Wydawca

-

Rocznik

Tom

59

Numer

1

Opis fizyczny

p.21-31,fig.,ref.

Twórcy

autor
  • University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor
autor

Bibliografia

  • Agawin N.S.R., CM. Duarte and S. Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591-600.
  • Bell T. and J. Kalff. 2001. The contribution of picophytoplankton in marine and freshwater system of different trophic status and depth. Limnol. Oceanogr. 46: 1243-1248.
  • Callieri C. and J.G. Stockner. 2002. Freshwater autotrophic picoplankton: a review. J. Limnol. 6: 1-14.
  • Carrick H.J. and C.L. Schelske. 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnol. Oceanogr. 42: 1613-1621.
  • Carlson R.E. 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361-369.
  • Chróst R.J. and W. Siuda. 2006. Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic water layer in the pelagial zone of lakes along the eutrophication gradient. Limnol. Oceanogr. 51:749-762.
  • Crosbie N.D, M. Pöckl and T. Weisse. 2003a. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16SrRNA gene and cpcBA intergenic spacer sequence analyses. Appl. Environ. Microb. 69: 5716-5721.
  • Crosbie N.D., M. Pöckl and T. Weisse. 2003b. Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting J. Microbiol. Methods 55: 361-370.
  • Ernst A. 1991. Cyanobacterial picoplankton from Lake Constance. T. Isolation by fluorescence characteristics. J. Plankton Res. 13: 1307-1312.
  • Ernst A., S. Becker, U.I.A. Wollenzien and C. Postius. 2003. Ecosystem dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149: 217-228.
  • Ernst A., M. Deicher, P.M. Herman and U.I.A. Wollenzien. 2005. Nitrate and Phosphate Affect Cultivability of Cyanobacteria from Environments with Low Nutrient Levels. Appl. Environ. Microbiol. 71: 3379-3383.
  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
  • Guillard R.R. and C.J. Lorenzen. 1972. Yellow-green algae with chlorophyllide. J. Phycol. 8: 10-14.
  • Hepperle D. and L. Krienitz. 2001. Systematics and ecology of chlorophyte picoplankton in German inland waters along a nutrient gradient. Internat. Rev. Hydrobiol. 86: 269-284.
  • Haverkamp T., S.G. Acinas and M. Doeleman. 2008. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein opérons. Environ. Microbiol. 10: 174-188.
  • Jasser I. 2002. Autotrophic picoplankton (APP) in four lakes of different trophic status: composition, dynamics and relation to phytoplankton. Pol. J. Ecol. 50: 341-355.
  • Jasser I. and L. Arvola. 2003. Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. J. Plankton Res. 25: 873-883.
  • Jasser I. 2006. The relationship between APP-the smallest autotrophic component of food web and trophic status and the depth of lakes. Ecohydroi. Hydrobiol. 6: 69-77.
  • Jasser I., I. Kostrzewska-Szlakowska, J. Ejsmont-Karabin, K. Kalinowska and T. Węgleńska. 2009. Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: the role of microbial communities. Pol. J. Ecol. 57: 423-439.
  • Jezberová J. and J. Komárková. 2007. Morphometry and growth of three Synechococcus-like picoplanktonic cyanobacteria at different culture conditions. Hydrobiologia 578: 17-27.
  • Johnson P.W. and J. McN. Sieburth. 1979. Chroococcoid cyanobacteria in the sea; a ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr 24: 928-935.
  • Lanave C, G. Preparata., C. Saccone and G. Serio. 1984. A new method for calculating evolutionary substitution rates. J. Mot. Evol. 20: 86-93.
  • Lepere C, A. Wilmotte and B. Meyer. 2000. Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. Syst. Geogr. Plants 70: 275-283.
  • Malinsky-Rushansky N. and T. Berman. 1991. Picocyanobacteria and bacteria in lake Kinneret. Int. Rev. ges. Hydrobiol. 76: 555-564.
  • Mózes A., M. Présing and L. Vörös. 2006. Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Internat. Rev. Hydrobiol. 91: 38-50.
  • Page R.D.M. 1996. TREEVIEW: an applications display phylo-genetic trees on personal computers. Comp. Appl. Biosci. 12: 357-358.
  • Posada D. and K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.
  • Rodriguez F., J.L. Oliver, A. Marin and J.R. Medina. 1990. The general stochastic model of nucleotide substitution. J. Theor. Biol. 142: 485-501.
  • Robertson B.R., N. Tezuka and M.M. Watanabe. 2001. Phylo-genetic analyses of Synechococcus strains (cyanobacteria) using sequences of the 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 51: 861-871.
  • Scheldman P., D. Baurain, R. Bouhy, M. Scott, M. Muhling, B.A. Whitton, A. Belay and A. Wilmotte. 1999. Arthrospira ('Spirulina') strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiol. Lett. 172:213-222.
  • Sherr B.F., E.B. Sherr, T.L. Andrew, R.D. Fallon and S.Y. Newell. 1986. Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water analyzed with selective metabolic inhibitors. Marine Ecology-Progress Series. 32: 169-179.
  • Søndergaard M. 1991. Phototrophic picoplankton in temperate lakes: seasonal abundance and importance along trophic gradient. Int. Rev. ges. Hydrobiol. 76, 502-522.
  • Stomp M., J. Huisman, L. Voros, F.R. Pick, M. Laamanen, T. Haverkamp and L.J. Stal. 2007. Colourful coexistence of red and green picocyanbacteria in lakes and seas. Ecol. Lett. 10: 290-298.
  • Stanier R.Y., R. Kunisawa, M. Mandel and G. Cohen-Bazier. 1971 Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriot. Rev. 35: 171-205.
  • Stockner J.G. 1991 Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int. Rev. ges. Hydrobiol. 76:483-493.
  • Swofford D.L. 1998. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4. Sunderland, Massachusetts, USA:Sinauer.
  • Tamura K. and K. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526.
  • Tavare S. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Lee. Math. Life Sci. 17: 57-86.
  • Thompson J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
  • Vörös L., C. Callieri, K.V. Balogh and R. Bertoni. 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369/370: 117-125.
  • Watanabe M.M., M. Nakagawa, M. Katagiri, K. Aizawa, M. Hiroki and H. Nozaki. 1998. Purification of freshwater picoplanktonic cyanobacteria by pour-plating in "ultra-low-gelling-temperature agarose". Phycol. Res. 42: 71-75.
  • Wakabayashi T. and S. Ichise. 2004. Seasonal variation of phototrophic picoplankton in Lake Biwa. Hydrobiologia 528: 1-16.
  • Waterbury J.B., S.W. Watson, R.R.L. Guillard and L.E. Brand. 1979. Widespread occurrence of unicellular, marine, planktonic cyanobacterium. Nature 277: 293-294.
  • Weisse T. 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. In Jones, W.J.G. [Ed.] Advances in microbial ecology. Plenum Press, New York. 13: 327-370.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2ba63245-09b0-46f0-9e0e-31b4fffbb61e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.