S y n o p s i s. W pracy przedstawiono możliwości wykorzystania systemu termowizyjnego w oparciu o kamery AGEMA 880 LWB w uprawach pod osłonami.

Słowa kluczowe: termowizja, uprawy pod osłonami, warunki termiczne

WSTĘP

Spośród metod analizy promieniowania cieplnego szczególne znaczenie ma termografia [2,3,5,6]. Podstawowymi zaletami tej techniki wyróżniającymi ją spośród innych metod są:

- możliwość wielopunktowej rejestracji i analizy rozkładów termalnych;
- możliwość rejestracji w czasie rzeczywistym;
- zapamiętywanie zobrazowań i sekwencji obrazów na taśmie magnetycznej lub w pamięci komputera;
- czułość i szybkość detektorów fotonowych (w różnych układach);
- współpraca z komputerem oferującym oprogramowanie z różnorodnymi procedurami i funkcjami ułatwiającymi analizę obrazów;
- praca w kilku zakresach spektrum (np. AGEMA Thermovision Systems serii 900);
- możliwość zastosowania w bardzo wielu gałęziach nauki i techniki.

W Polsce dostępne są urządzenia termograficzne produkujące na świecie szwedzkie firmy AGEMA [1]. Umieszczają one pracę w zakresie długofalowym (8-13 μm) i krótkofalowym (2-5 μm).

TERMOGRAFICZNY POMIAR PROMIENIOWANIA PODCZERWONEGO

W kamerze termowizyjnej AGEMA 880 LWB (Rys. 1) promieniowanie dochodzące od obiektu przechodzący przez układ soczewek germanowych lub krzemowych, wchodzi do układu mechanicznej analizy obrazu. Najpierw jest ono skupiane na oscylującym zwierciadle rozkładającym obraz w płaszczyźnie pionowej. Następnie przechodząc przez układ trzech na stałe zamocowanych zwierciadeł jest ogniskowane na wielokątym graniastosłupie o poziomej osi obrotu, obracającym się wokół niej z prędkością 16000 obr/min.

Obydwa ruchome zwierciadła są kontrolowane przez mikroprocesor. Ruch pionowego i poziomego zwierciadła jest tak synchronizowany, aby otrzymywać obraz składający się z 70 aktywnych poziomych linii w czterech pionowych polach (razem 280 aktywnych linii na obraz) otrzymuje się 6 pełnych obrazów obiektu na sekundę.

Strumień promieniowania odbity od poziomego wirującego zwierciadła po przejściu przez układ przesłony i filtr jest skupiony na punktowym detektorze (średnica 150 μm) umocowanym z boku naczynia Dewara z ciepłym azotem.
Sygnał elektryczny z detektora fotoelektrycznego przechodzi do monitora termowizyjnego, gdzie ulega odpowiedniej obróbce. Widoczny zakres czułości kamery termowizyjnej jest wypadkową czułości widmoowej opytki germanowej i detektora (Rys. 2).

Urządzenia termograficzne wykorzystuje się do pomiaru rozkładu temperatury radiacyjnej badanych powierzchni. Pomiar ten nie odbywa się jednak w sposób bezpośredni. Detektor rejestruje promieniowanie podczerwone dochodzące od badanego obiektu. Gęstość strumienia tego promieniowania jest związana z temperaturą promieniującego obiektu, ale wpływa na nią również pochłanianie promieniowania przez atmosferę, odbite od obiektu podczerwone promieniowanie tła oraz promieniowanie układu optycznego i przeszukiwania. Dlatego przy określaniu temperatury radiacyjnej trzeba stosować odpowiednie procedury korekcyjne uwzględniające wpływ tych czynników.
Miarą zarejestrowanego przez detektor termowizora promieniowania podczerwonego jest wartość termalna (Thermal Value) wyrażona w jednostkach izoterm (IU - Isothermal Units). Związek między wartością termalną a zarejestrowanym strumieniem promieniowania podczerwonego jest liniowy. Natomiast związek między wartością termalną a temperaturą obiektu określa funkcja kalibracyjna:

\[I = \frac{R}{\exp\left(\frac{B}{T} - F\right)} \]

gdzie: \(I \) - wartość termalna odpowiadająca temperaturze \(T(\text{IU}) \), \(T \) - temperatura bezwzględna obiektu (K); \(R, B, F \) - odpowiednio współczynniki: reakcji, spektralny i kształt.

Funkcję kalibracyjną dla każdego skanera określa się rejestrując promieniowanie ciała doskonałe czarnego w różnych temperaturach, wyznaczając współczynniki \(R, B, F \), w modelu metodą najmniejszych kwadratów.

Skaner współpracuje w systemie termowizyjnym AGEMA skonfigurowanym w sposób przedstawiony schematycznie na Rys. 3.

ANALIZA OBRAZÓW TERMALNYCH

System termowizyjny AGEMA 880 LWB wyposażony jest w firmowy pakiet programów CATSE 2.0 umożliwiających komputerową analizę obrazów termalnych [1]. Zawiera on wiele procedur przetwarzania obrazu, umożliwiających między innymi:

- filtrację przestrzenną obrazu;
- otrzymywanie obrazów różnicowych lub stanowiących uśrednienie wielu obrazów składowych;
- wpasowywanie położenia obrazu w trybie pracy na żywo do obrazu z pamięci komputera;
- wycinanie z obrazu pikseli o odpowiednich wartościach temperatury;
- tworzenie obrazu zwierciadlanego;
- obrót obrazu o wybrany kąt;
- powiększanie fragmentów obrazu;
- likwidację zamazów obrazu związanych z ruchem obiektu;
- sygnalizację dźwiękową (alarm) w przypadku przekroczenia wartości krytycznej temperatury wybranych obiektów.

MOŻLIWOŚCI WYKORZYSTANIA SYSTEMU TERMOWIZYJNEGO W UPRAWACH POD OŚLONĄ

Metoda termowizyjna umożliwia w sposób dynamiczny rejestrację rozkładów temperatury radiacyjnej różnych powierzchni. Może ona mieć istotne znaczenie w badaniach warunków temperaturowych upraw pod ośnionymi, w celu optymalnej ich eksploatacji.

Zobrazowania termalne pozwalają uzyskiwać mapę rozkładu temperatury powierzchni badanego obszaru. Temperatura radiacyjna roślin zawiera informację o ich stanie fizjologicznym. Zaburzenia pola temperaturowego wskazują na zmiany chorobowe roślin, zaatakowanie szkodnikami, brak dostępności wody, stres tlenny, niedobór składników pokarmowych i
Rys. 4. Termogram dwu roślin pomidora w doświadczeniu wazonowym.

Na przykład Rys. 4 przedstawia obraz termalny dwóch roślin pomidora w doświadczeniu wazonowym. Rośliny te znajdują się w tych samych kontrolowanych warunkach zewnętrznych, różna jest natomiast dostępność wody glebowej co uwidacznia się w zróżnicowaniu ich temperatury radiacyjnej. Na obrazie rośliny o wyższej temperaturze (trudno dostępna woda glebowa) wyróżniono pola 1 i 2, a na obrazie rośliny o niższej temperaturze (łatwo dostępna woda glebowa) pola 3, 4 i 5. Tabela z prawej strony obrazu zawiera następujące dane dla wybranych pól: AR1-AR4 - ilość pikseli i współrzędne piksela środkowego, EXT - wartości ekstremalne temperatury w polu, STA - wartość średnia i odchylone standardowe temperatury w polu. Jak wynika z analizy statystycznej wyróżnionych pól obrazu, zawartej w tabeli obok, różnica średnich wartości temperatury radiacyjnej wynosi 0,6 °C.

Warunki termiczne panujące w różnych częściach stanowiska uprawowego mają istotny wpływ na prawidłowy rozwój roślin, przy czym poszczególne gatunki roślin mają różne wymagania temperaturowe. Pomiary termowizyjne całej powierzchni uprawowej pod osłonami pozwalają poznawać warunki temperaturowe i w następstwie na planowanie i wyznaczanie miejsc pod poszczególne uprawy. W przypadku niepełnego pokrycia projekcyjnego, możliwa jest również doraźna termowizyjna kontrola stanu podłoża. Pomiary termowizyjne mogą być również bardzo pomocne w ocenie stanu izolacji cieplnej osłon.

Inny rodzaj zastosowania termowizji w doświadczeniach pod osłonami ilustruje Rys. 5. Rośliny rosnące w czterech wazonach oświetlone były światłem sztucznym. Na obrazie termalnym wybrano 5 punktów, odpowiednio dla ciała do skonale czarnego (nr 1) i roślin rosnących w czterech wazonach (nr 2-5). Po wyłączeniu oświetlenia przez 192 sekundy rejestrowano zmianę wartości temperatury radiacyjnej w wybranych punktach co przedstawia wykres z prawej strony rysunku.

Analiza mapy pola temperaturowego powierzchni roślin pozwala na precyzyjne wyznaczanie zasięgów negatywnych zmian, niewidocznych gołym okiem. Stanowi to wskaźówkę by przeprowadzić w tych miejscach badania i analizy wyjaśniające ich przyczyny. Umożliwia to szybką interwencję i zapobieżenie rozprzestrzeniańiu się negatywnych zmian.
Rys. 5. Dynamika zmian temperatury radiacyjnej w czasie w wybranych punktach obrazu termalnego.

WNIOSEK

Metoda termowizyjna umożliwia w sposób dynamiczny rejestrację rozkładów temperatury radiacyjnej różnych powierzchni. Może ona mieć istotne znaczenie w badaniach warunków temperaturowych upraw pod osłonami, dla optymalnej ich eksploatacji.

LITERATURA

EVALUATION OF THERMAL CONDITIONS IN HOT-BED CULTURES WITH THE USE OF THERMOVISION TECHNIQUE

This paper presents the possibilities of using the thermovision system in hot-bed cultures. The system was based on camera AGEMA 880 LWB.

Keywords: thermovision, hot-bed cultures, thermal conditions.