PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 15 | 3 |

Tytuł artykułu

Enzymatic activity of bacterial strains isolated from marine beach sediments

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Potential capability of heterotrophic bacteria for extracellular enzyme synthesis and their activity were determined in a transect from dunes to a water depth of 1 m in a sandy beach near Sopot on the southern Baltic coast. Among studied enzymes, alkaline phosphatase, esterase lipase, and leucine arylaminase were synthesized in a higher degree, whereas α-fucosidase, βglucouronidase and α-galactosidase had only low levels. No clear horizontal gradients were observed in the transect from dune to water. The enzyme activities of bacteria isolated from the surface and subsurface did not differ in their height and composition. Bacteria isolated form the sand of studied beach in different seasons, as a rule, synthesized the tested hydrolytic enzymes with similar intensity.

Wydawca

-

Rocznik

Tom

15

Numer

3

Opis fizyczny

p.441-448,fig.,ref.

Twórcy

autor
  • Pedagogical University, Arciszewskiego 22, 76-200 Slupsk, Poland
autor

Bibliografia

  • 1. SCHOEMAN D. S., MCLACHLAN A., DUGAN J. E. Lessons from a disturbance experiment in the intertidal zone of an exposed sandy beach. Estuar. Coast. Shelf Sci. 50, 869, 2000.
  • 2. BROWN A. C., MCLACHLAN A. Ecology of Sandy Shores. Elsevier, Amsterdam, 328 pp. 1990.
  • 3. HEYMANS J. J., MCLACHLAN A. Carbon budget and network analysis of a high energy bech/surf-zone ecosystems. Estuar. Coast. Shelf Sci. 43, 485, 1996.
  • 4. NAIR S., BHARATHI L. Heterotrophic bacterial population in tropical sandy beaches. Mahas. Bull. Nat. Inst. Oceanogr. 13, 261, 1980.
  • 5. MACLACHLAN A., ROMER G. Trophic relationships in a high energy beach and surf zone ecosystem. In: M. Barnes, R. N. Gibson (Eds.), Proc. 24 Europ. Mar. Biol. Symp. Aberdeen Univ. Press. 365, 1990.
  • 6. MACLACHLAN A., TURNER I. The interstitial environment of sandy beaches.P.S.Z.N Mar. Ecol. 15, 177, 1994.
  • 7. URABAN – MALINAGA B., OPALIŃSKI K.W. Interstitial community oxygen consumption in a Baltic sandy beach: horizontal zonation. Oceanol. 43, 455, 2001.
  • 8. JĘDRZEJCZAK M. F. The degradation of stranded carrion on a Baltic Sea sandy beach. Oceanol. Stud. 3, 109, 1999.
  • 9. KOOPK., GRIFFITHS C. L. The relative significance of bacteria, meio-and macrofauna on an exposed sandy beaches. Mar. Biol. 66, 295, 1982.
  • 10. ARNOSTI C., JORGENSEN B. B., SAGEMANN J., TRAMDRUP T. Temperature dependence of microbial degradation of organic matter in marine sediment: polysaccharide hydrolysis, oxygen consumption, and sulphate reduction. Mar. Ecol. Prog. Ser. 165, 59, 1998.
  • 11. POREMBA K. Hydrolytic enzymatic activity in deep-sea sediments. FEMS Microbial. Ecol. 16, 213, 1995.
  • 12. UNANUE M., AYO B., AGIS M., SLEZAK D., HERNDL G. J., IRIBERRI J. Ectoenzymatic activity and uptake of monomers in marine bacterioplankton described by a biphasic kinetic model. Microbial. Ecol. 37, 36, 1999.
  • 13. BROWN A.C., GOULDERR. Extracellular-enzyme activity in trout effluents and recipient river. Aqua. Res. 27, 895, 1996.
  • 14. PATEL A.B., FUKAMI K., NISHIJAMA T. Regulation of seasonal variability of aminopeptidase activities in surface and bottom waters of Uranouchi Inlet, Japan. Aqua. Microbial. Ecol. 21, 139, 2000.
  • 15. HOPPE H. G., ARNOSTI C., HERNDEL G. F. Ecological significance of bacterial enzymes in marine environment. In: RC. Burns, R.P. Dick (Eds.), Microbial Enzymes in the Environment Activity, Ecology, and Applications Marcel Dekker, 73, 2002.
  • 16. MALLET C., DEBROAS D. Relations between organic matter and bacterial proteolytic activity in sediment surface layers of a eutrophic lake (Lake Aydat, Puy de Dôme, France). Arch. Hydrobiol. 145, 39, 1999.
  • 17. MUDRYK Z., SKÓRCZEWSKI P. Extracellular enzyme activity at the air -water inference of an estuarine lake. Estuar. Coast. Shelf Sci. 59, 59, 2004.
  • 18. MÜNSTER U., CHRÓST R. J. Organic composition and microbial utilization of dissolved organic matter. In: Overbeck J., Chróst R. J. (Eds.). Aquatic Microbial Ecology. Biochemical and Molecular Approaches. Springer-Verlag, New York, Berlin, Heidelberg, Paris, Tokyo, Hong Kong, Barcelona, pp. 8-46. 1990.
  • 19. BOETIUS A. Microbial hydrolytic enzyme activities in deep-sea sediments, Hel. Meer. 49, 177, 1995.
  • 20. JACKSON C. R., FOREMAN C. M., SINSABAUGH R. L. Microbial enzyme activities as indicator of organic matter processing rates in a lake Erie coastal wetland. Fresh. Biol. 34, 329, 1995.
  • 21. HAQUE, A. M., SZYMELFENIG, M., WĘCŁAWSKI, M. Spatial and seasonal changes in the sandy littoral zoobenthos of the Gulf of Gdańsk. Oceanologia, 39, 299. 1997.
  • 22. WĘCŁAWSKI M., URBAN-MALINGA B., KOTWICKI L., OPALIŃSKI K.W., SZYMELFENIG M., DUTKOWSKI M. Sandy coastlines are there conflicts between recreation and natural values? Oceanol. Stud. 2, 5, 2000.
  • 23. RHEINHEIMER G. Microbial ecology of a brackish water environment. Ecology Studies 25. (Eds). Springer-Verlag Berlin, Heidelberg, New York. 291 pp. 1977.
  • 24. ZDANOWSKI M.K., FIGUERIAS F.G. CFU bacterial fraction in the estuarine upwelling ecosystem of Ria de Vigo, Spain: variability in abundance and their ecophysiological description. Mar. Ecol. Prog. Ser. 182, 1, 1999.
  • 25. MARTINEZ J., SMITH D. C., STEWARD D. F., AZAM F. Variability in ectohydrolytic enzyme actives of pelagic marine bacteria and its significance for substrate processing in the sea. Aqua. Microbial Ecol. 10, 223, 1996.
  • 26. DELLANNO A., FABIANO M., MEI L., DANOVARO M. R. Enzymatically hydrolysed protein and carbohydrate pools in deep-sea sediments: estimates of the potentially bioavailable fraction and metodological considerations. Mar. Ecol. Prog. Ser. 196, 15, 2000.
  • 27. FOREMAN C. M., FRANCHINI P., SINSABAUGH R. L. The trophic dynamics of riverine bacterioplankton: Relationships among substrate amiability, ectoenzyme kinetics, and growth. Limnol. Oceanogr. 43, 1344, 1998.
  • 28. LAMY F., BIANCHI M., VAN WAMBEKE F., SEMPERE R., TALBOT V. Use of data assimilation techniques to analyze the significance of ectoproteolytic activity measurements performed with the model substrate MCA-Leu. Mar. Ecol. Prog. Ser. 177, 27, 1999.
  • 29. INCERA M., CIVIDANES S. P., LÓPEZ J., COSTAS R. Role of hydrodynamic conditions on quantity and biochemical composition of sediment organic matter in sandy intertidal sediments (NW Atlantic coast, Iberian Peninsula). Hydrobiologia 497, 39, 2003.
  • 30. HOPPE H. G., ULRICH S. Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone. Aqua. Microbial Ecol. 19, 139, 1999. 31 HOPPE H. G. Phosphatase activity in the sea. Hydrobiologia 493, 187, 2003.
  • 31. COOPER J. E., EARLY J., HOLDING A. J. Mineraliztion of dissolved organic phosphorus from a shallow eutrophic lake. Hydrobiologia 209, 89, 1991.
  • 32. NIEWOLAK S. Occurrence of microorganisms in fertilized lakes. III. Phenolphtalein diphosphate-splitting microorganisms. Pol. Arch. Hydrobiol. 27, 73, 1980.
  • 33. CHRÓST R., OVERBECK J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake Pluβsee (North German eutrophic lake). Microbial. Ecol. 13, 229, 1987.
  • 34. KRSTULOVIĆ N. Quantitative and qualitative investigations of organic phosphorus decomposing bacteria in the Central Adriatic. Acta Adria. 21, 203, 1980.
  • 35. ZDANOWSKI M. K., DONACHIE S. P. Bacteria in the seaice zone between Elephant Island and the South Orkneys during the Polish sea-ice zone expedition, (December 1988 to January 1989). Pol. Biol. 13, 245, 1993.
  • 36. MUDRYK Z. Decomposition of organic and solubilization of inorganic phosphorus compounds by bacteria isolated from a marine sandy beach. Mar. Biol. 145, 1227, 2004.
  • 37. AINSWORTH A. M., GOULDER R. The effect of sewageworks effluent on riverine extracellular aminopeptidase activity and microbial leucine assimilation. Wat. Res. 34, 2551, 2000.
  • 38. PANTOJA S., LEE C. Cell-surface oxidation of amino acids in seawater. Limnol. Ocenogr. 39, 1718, 1994.
  • 39. SIMON M. Bacterioplankton dynamics in a large mesotrophic lake. II Concentration and turn-over of dissolved amino acids. Arch. Hydrobiol. 144, 295, 1998.
  • 40. MUDRYK Z., PODGÓRSKA B. Spatial variability in the activity of hydrolytic enzymes in a marine beach (southern Baltic Sea). Pol. J. Ecol. 53, 255, 2005.
  • 41. MIDDELBOE M., SONDERGAARD A., LATARTE Y., BOROCH N. M. Attached and free-living bacteria: production and polymer hydrolysis during a diatom bloom. Microbial Ecol. 29, 231, 1995.
  • 42. JONES S. E., LOCK M. A. Hydrolytic extracellular enzyme activity in heterotrophic biofilms from contrasting rivers. Freshwat. Biol. 22, 289, 1989.
  • 43. BOSCHKER H. T. S., CAPPENBERG T. E. Patterns of extracellular enzyme activities in litorall sediments of Lake Gooimeer, The Netherlands FEMS Microbial. Ecol. 25, 79, 1998.
  • 44. GAJEWSKI A., KIRSCHNER A. K. T. Velimir ov B. Bacterial lipolytic activity in a hypertrophic dead arm of the river Danube in Vienna. Hydrobiologia 344, 1, 1997.
  • 45. PODGÓRSKA B. Precipitation of bacteria in the transformation processes of organic matter in ecotone sandy beaches (southern Baltic Sea). Ph.D. Thesis, Institute of Oceanology, Polish Academy of Sciences Sopot (in Polish) pp. 163, 2002.
  • 46. CHRÓST R., GAJEWSKI A. J. Microbial utilization of lipids in lake water. FEMS Microbial. Ecol. 18, 45, 1995.
  • 47. MEYER-REILL. A. Seasonal and spatial distribution on extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl. Environ. Microbiol. 53, 1748, 1987.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2a1066c9-ba28-4da8-85b5-65a8e23e6f31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.