PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 51 | 4 |

Tytuł artykułu

Modes of inhibition of cysteine proteases

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cysteine proteases are involved in many physiological processes and their hyperac­tivity may lead to severe diseases. Nature has developed various strategies to protect cells and whole organisms against undesired proteolysis. One of them is the control of proteolytic activity by inhibition. This paper presents the mechanisms underlying the action of proteinaceous inhibitors of cysteine proteinases and covers propeptides binding backwards relative to the substrate or distorting the protease catalytic cen­tre similarly to serpins, the p35 protein binding covalently to the enzyme, and cystatins that are exosite binding inhibitors. The paper also discusses tyropins and chagasins that, although unrelated to cystatins, inhibit cysteine proteinases by a sim­ilar mechanism, as well as inhibitors of the apoptosis protein family that bind in a di­rection opposite to that of the substrate, similarly to profragments. Special attention is given to staphostatins, a novel family of inhibitors acting in an unusual manner.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

51

Numer

4

Opis fizyczny

p.861-873,fig.,ref.

Twórcy

autor
  • Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
autor

Bibliografia

  • Abrahamson M. (1988) Human cysteine proteinase inhibitors. Isolation, physiological importance, inhibitor mechanizm, gene structure and relation to hereditary cerebral hemorrhage. Scand J Clin Lab Invest Suppl.; 191: 21-31.
  • Abrahamson M, Ritonjas A, Brown MA, Grubb A, Machleidt W, Barrett AJ. (1987) Identification of the probable inhibitory reactive sites of the cysteine proteinases inhibitors human cystatin C and chicken cystatin. J Biol Chem.; 262: 9688-94.
  • Barrett AJ, Rawlings ND, Woessner JF. (1998) Handbook of Proteolytic Enzymes. Academic Press, San Diego, California.
  • Berdowska I, Siewinski M. (2000) Rola katepsyn cysteinowych oraz ich inhibitorow w procesach fizjologicznych i nowotworowych. Postepy Biochem.; 46: 73-84 (in Polish).
  • Bjork I, Ylinenjarvi K. (1989) Interaction of chicken cystatin with inactivated papains. Biochem J.; 260: 61-8.
  • Bode W, Huber R. (2000) Structural basis of the endoproteinase — protein inhibitor interaction. Biochim Biophys Acta.; 1477: 241-52.
  • Bode W, Engh R, Musil D, Thiele U, Huber R, Karshikov A, Brzin J, Kos J, Turk V. (1988) The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J.; 7: 2593-9.
  • Bode W, Engh R, Musil D, Laber B, Stubbs M, Huber R, Turk V. (1990) Mechanism of interaction of cysteine proteinases and their protein inhibitors as compared to the serine proteinase-inhibitor interaction. Biol Chem Hoppe-Seyler.; 371: 111-8.
  • Carmona E, Dufor E, Plouffe C, Takebe S, Mason P, Mort JS, Menard R. (1996) Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry.; 35: 8149-57.
  • Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Syi Y, Dataa P. (2001) Structural basis of caspase-7 inhibition by XIAP. Cell.; 104: 769-80.
  • Chapman HA, Riese JR, Shi GP. (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol.; 59: 63-88.
  • Chen C-Y, Luo S-C, Kuo C-F, Lin Y-S, Wu J-J, Lin MT, Liu C-C, Jeng W-Y, Chuang W-J. (2003) Maturation processing and characterization of streptopain. J Biol Chem.; 278: 17336-43.
  • Coulombe R, Grochulski P, Sivaraman J, Menard R, Mort JS, Cygler M. (1996) Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J.; 15: 5492-503.
  • Cygler M, Mort JS. (1997) Proregion structure of members of the papaine superfamily. Mode of inhibition of enzymatic activity. Biochimie.; 79: 645-52.
  • Drenth J, Kalk KH, Swen HM. (1976) Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry.; 15: 3731-8.
  • Dubin G. (2002) Extracellular proteases of Staphylococcus spp. Biol Chem.; 383: 1075-86.
  • Dubin G. (2003) Defense against own arms: staphylococcal cysteine proteases and their inhibitors. Acta Biochim Polon.; 50: 715-24.
  • Dubin G, Krajewski M, Popowicz G, Stec-Niemczyk J, Bochtler M, Potempa J, Dubin A, Holak TA. (2003) A novel class of cysteine protease inhibitors: solution structure of staphostatin A from Staphylococcus aureus. Biochemistry.; 42: 13449-56.
  • Filipek R, Rzychon M, Oleksy A, Gruca M, Dubin A, Potempa J, Bochtler M. (2003) The staphostatin-staphopain complex. J Biol Chem.; 278: 40959-66.
  • Fox T, de Miquwl E, Mort JS, Storer AC. (1992) Potent slow-binding inhibition of cathepsin B by its propeptide. Biochemistry.; 31: 12571-6.
  • Fujishima A, Imai Y, Nomura T, Fujisawa Y, Yamamoto Y, Sugawara T. (1997) The crystal structure of human cathepsin L complexed with E-64. FEBSLett.; 407: 47-50.
  • Garavito RM, Rossmann MG, Argos P, Eventoff W. (1977) Convergence of active center geometries. Biochemistry.; 16: 5065-71.
  • Groves MR, Coulombe R, Jenkins J, Cygler M. (1998) Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Proteins.; 32: 504-14.
  • Grzelakowska-Sztaber B. (1998) Molecular mechanisms of apoptosis induced by activation of membrane receptors from the TNF-R superfamily. PostepyBiochem.; 44: 8-21 (in Polish).
  • Grzonka Z, Jankowska E, Kasprzykowski F, Kasprzykowska R, Lankiewicz L, Wiczk W, Wieczerzak E, Ciarkowski J, Drabik P, Jankowski R, Kozak M, Jaskolski M, Grubb A. (2001) Structural studies of cysteine proteases and their inhibitors. Acta Biochim Polon.; 48: 1-20.
  • Guncar G, Pungercic G, Klemencic I, Turk V, Turk D. (1999) Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J.; 18: 793-803.
  • Hall A, Dalboge H, Grubb A, Abrahamson M. (1993) Importance of the evolutionary conserved glycine residue in the N-terminal region of human cystatin C. Biochem J.; 291: 123-9.
  • Hall A, Hakansson K, Mason RW, Grubb A, Abrahamson M. (1995) Structural basis of the biological specificity of cystatin C. J Biol Chem.; 270: 5115-21.
  • Harrison MJ, Burton NA, Hillier IH. (1997) Catalytic mechanism of the enzyme papain: predictions with a hybrid quantum mechanical/molecular mechanical potential. J Am Chem Soc.; 119: 12285-91.
  • Huntington JA, Read RJ, Carrell RW. (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature.; 407: 923-6.
  • Kagawa TF, Cooney JC, Baker HM, McSweeney S, Liu M, Gubba S, Musser JM, Baker EN. (2000) Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease. Proc Natl Acad Sci USA.; 97: 2235-40.
  • Kamphuis IG, Kalk KH, Swarte MB, Drenth J. (1984) Structure of papain refined at 1.65 Â resolution. J Mol Biol.; 179: 233-56.
  • LaLonde JM, Zhao B, Janson CA, D'Alessio KJ, McQueney MS, Orsini MJ, Debouck CM. (1999) The crystal structure of human procathepsin K. Biochemistry.; 38: 862-9.
  • Lenarcic B, Turk V. (1999) Thyroglobulin type-1 domains in equistatin inhibit both papain-like cysteine proteinases and cathepsin D. J Biol Chem.; 274: 563-6.
  • Lowy FD. (1998) Staphylococcus aureus infections. N Engl J Med.; 339: 520-32.
  • Masson RW, Solchurch K, Abrahamson M. (1998) Amino acid substitutions in the N-terminal segment of cystatin C create selective protein inhibitors of lysosomal cysteine proteinases. Biochem J.; 330: 833-8.
  • Massimi I, Park E, Rice K, Muller-Esterl W, Sauder D, McGavin MJ. (2002) Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J Biol Chem.; 277: 41770-7.
  • Masumoto K, Sakata Y, Arima K, Nakao I, Izuhara K. (2003) Inhibitory mechanism of a cross-class serpin, the squamous cell carcinoma antigen 1. J Biol Chem.; 278: 45296-304.
  • McGrath ME. (1999) The lysosomal cysteine proteases. Annu RevBiophys Biomol Struct.; 28: 181-204.
  • Menard R, Carriere J, Laflamme P, Plouffe C, Khouri HE, Vernet T, Tessier DC, Thomas DY, Storer AC. (1991) Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry.; 30: 8924-8.
  • Menard R, Plouffe C, Laflamme P, Vernet T, Tessier DC, Thomas DY, Storer AC. (1995) Modification of the electrostatic environment is tolerated in the oxyanion hole of the cysteine protease papain. Biochemistry.; 34: 464-71.
  • Mitchell R, Chaiken I, Smith E. (1970) The complete amino acid sequence of papain. Additions and corrections. J Biol Chem.; 245: 3485-92.
  • Monteiro ACS, Abrahamson M, Lima APCA, Vannier-Santos MA, Scharfstein J. (2001) Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor in Trypanosoma cruzi. J Cell Sci.; 114: 3933-42.
  • Otto HH, Schirmeister T. (1997) Cysteine proteases and their inhibitors. Chem Rev.; 97: 133-71.
  • Pavloff N, Potempa J, Pike RN, Prochazka V, Kiefer MC, Travis J, Barr PJ. (1995) Molecular cloning and structural characterization of the Arg-gingipain proteinase of Porphyromonas gingivalis. Biosynthesis as a proteinase-adhesin polyprotein. J Biol Chem.; 270: 1007-10.
  • Podobnik M, Kuhelj R, Turk V, Turk D. (1997) Crystal structure of the wild-type human procathepsin B at 2.5 Â resolution reveals the native active site of a papain-like cysteine protease zymogen. J Mol Biol. ; 271: 774-88.
  • Potempa J, Pike R, Travis J. (1995) The multiple forms of trypsin-like activity present in various strains of Porphyromonasgingivalis are due to the presence of either Arg-gingipain or Lys-gingipain. Infect Immun.; 63: 1176-82.
  • Rice K, Perlata R, Bast D, Azavedo J, McGavin MJ. (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun.; 69: 159-69.
  • Riedl SJ, Renatus M, Schwarzenbacher R, Zhou O, Sun C, Fesik SW, Liddington RC, Salvesen GS. (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell.; 104: 791-800.
  • Rigden D, Moscolov VV, Galperin M. (2002) Sequence conservation in the chagasin family suggests a comon trend in cysteine proteinase binding by unrelated protein inhibitors. Protein Sci; 11: 1971-7.
  • Rzychon M, Sabat A, Kosowska K, Dubin A, Potempa J. (2003a) Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains, Staphylococcus spp. cysteine proteinases. MolMicrobiol.; 49: 1051-66.
  • Rzychon M, Filipek R, Sabat A, Kosowska K, Dubin A, Potempa J, Bpchtler M. (2003b) Staphostatins resemble lipocalins, not cystatins in fold. Protein Sci.; 12: 2252-6.
  • Sandersen SJ, Westrop GD, Scharfstein J, Mottram JC, Coombs GH. (2003) Functional conservation of a natural cysteine peptidase inhibitor in protozoan and bacterial pathogens. FEBSLett.; 542: 12-6.
  • Schechter I, Berger A. (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun.; 27: 157-62.
  • Schick C, Bromme D, Bartuski AJ, Uemura Y, Schechter NM, Silverman GA. (1998a) The reactive site loop of the serpin SCCA1 is essential for cysteine proteinase inhibition. Proc Natl Acad Sci USA.; 95: 13465-70.
  • Schick C, Pemberton PA, Shi GP, Kamachi Y, Cataltepe S, Bartuski AJ, Gornstein ER, Bromme D, Chapman HA, Silverman GA. (1998b) Cross-class inhibition of the cysteine proteinases cathepsins K, L, and S by the serpin squamous cell carcinoma antigen 1: a kinetic analysis. Biochemistry.; 37: 5258-66.
  • Simonovic M, Gettins PGW, Volz K. (2000) Crystal structure of viral serpin crmA provides insights into its mechanism of cysteine proteinase inhibition. Protein Sci.; 9: 1423-7.
  • Stennicke HR, Ryan CA, Salvesen GS. (2002) Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem Sci.; 27: 94-101.
  • Stubbs MT, Laber B, Bode W, Hubert R, Jerala R, Lenarcic B, Turk V. (1990) The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J.; 9: 1939-47.
  • Takahashi M, Tezuka T, Katunuma N. (1994) Inhibition of growth and cysteine proteinase activity of Staphylococcus aureus V8 by phosphorylated cystatin alpha in skin cornified envelope. FEBS Lett.; 355: 275-8.
  • Takahashi M, Tezuka T, Korant B, Katunuma N. (1999) Inhibition of cysteine protease and growth of Staphylococcus aureus V8 and poliovirus by phosphorylated cystatin alpha conjugate of skin. BioFactors.; 10: 339-45.
  • Takeuchi S, Kinoshita T, Kaidoh T, Hashizume N. (1999) Purification and characterization of protease produced by Staphylococcus aureus isolated from a diseased chicken. Vet Microbiol.; 67: 195-202.
  • Turk D, Podobnik M, Kuhelj R, Dolinar M, Turk V. (1996) Crystal structures of human procathepsin B at 3.2 and 3.3 Ängstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBSLett.; 384: 211-4.
  • Varughese KI, Ahmed FR, Carey PR, Hasnain S, Huber CP, Storer AC. (1989) Crystal structure of a papain- E-64 complex. Biochemistry.; 28: 1330-2.
  • Wiederanders B. (2003) Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta Biochim Polon.; 50: 691-713.
  • Wiederanders B, Kaulmann G, Schilling K. (2003) Functions of propeptide parts in cysteine proteases. Curr Protein Pept Sci.; 4: 309-26.
  • Xu G, Cirilli M, Huang Y, Rich RL, Myszka DG, Wu H. (2001) Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature.; 410: 494-7.
  • Ye S, Goldsmith EJ. (2001) Serpins and other covalent protease inhibitors. Curr Opin Struct Biol. ; 11: 740-5.
  • Zhou Q, Salvesen GS. (2000) Viral caspase inhibitors CrmA and p35. Methods Enzymol.; 322: 143-54.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-274b6149-63f8-45d7-99b2-49991bf25da3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.