PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 2 |

Tytuł artykułu

A kinetics study of pig erythrocyte hemolysis induced by polyene antibiotics

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The kinetics of the hemolysis induced by filipin is of the damage type, indicating the formation of large nonselective perforations of erythrocyte membranes. The process is relatively independent of the ionic composition of the incubation medium, and the differences between the hemolysis induced by filipin in pig and human erythrocytes are not significant. In a sucrose medium, filipin-induced hemolysis is inhibited in humans, whereas it is stimulated in pig erythrocytes. It is suggested that low ionic strength is the reason for the different modifications of complexation of filipin in pig and human erythrocyte membranes in a sucrose medium. The kinetics of the hemolysis induced in pig erythrocytes by amphotericin B and nystatin is of the permeability type, indicating the formation of selective channels in erythrocyte membranes and colloid osmotic hemolysis. The rate of the hemolysis, which is high in a KCl medium, is decreased in all the other media tested (CaCl2, MgCl2, potassium phosphate buffer, K2S04, sucrose), although there are no changes in the kinetics of hemolysis. The results are interpreted as the formation of highly selective channels at a low concentration of the antibiotics. At increasing concentrations, channels of decreasing selectivity occur. The resistances of pig erythrocytes to amphotericin B and nystatin are lower than those of human erythrocytes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

08

Numer

2

Opis fizyczny

p.439-454,fig.

Twórcy

  • A.Mickiewicz University, Fredry 10, 61-701 Poznan, Poland
autor
autor

Bibliografia

  • 1. Vanden Bossche, H. Chemotherapy of human fungal infections, in: Modern selective fungicides. Properties, applications, mechanism of action. (Lyr, H., Ed.), Gustav Fisher Verlag, Jena, 1995, 431-484.
  • 2.Ablordeppey, S.Y., Fan, P., Ablordeppey, J.H. and Mardenborough, L. Systemic antifungal agents against AIDS-related opportunistic infections: Current status and emerging drugs in development. Curr. Med. Chem. 6 (1999) 1151-1195.
  • 3.King, C.T., Rogers, P.D., Cleary, J.D. and Chapman, S.W. Antifungal therapy during pregnancy. Clin. Infect. Dis. 27 (1998) 1151-1160.
  • 4.Luber, A.D., Maa, L., Lam, M. and Guglielmo, B.J. Risk factors for amphotericin B-induced nephrotoxicity. J. Antimicrob. Chemother. 43 (1999) 267-271.
  • 5.Deray G., Amphotericin B nephrotoxicity. J. Antimicrob. Chemother. 49 (2002) 37-41.
  • 6.Yoshikawa H. and Hayakawa, A. Freeze-fracture cytochemistry of membrane cholesterol in Blastocystis hominis. Int. J. Parasit. 26 (1996) 1111-1114.
  • 7.Gagoś, M. Koper, R. Gruszecki, W.I. Spectrophotometric analysis of organisation of dipalmitoylphosphatidylcholine bilayers containing the polyene antibiotic amphotericin B. Biochim. Biophys. Acta 1511 (2001) 90-98.
  • 8.De Kruijff, B., Gerritsen, W.J., Oerlemans, A., Demel, R.A. and Van Deenen, L.M.M. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii and lecithin liposomes. I. Specifity of the membrane permeability changes induced by the polyene antibiotics. Biochim. Biophys. Acta 339 (1974) 30-43.
  • 9.Kotler-Brajtburg, J., Medoff, G., Kobayashi, G.S., Bogss, S., Schlessinger, D., Pandey, R. and Rinehart, K.L. Classification of polyene antibiotics according to chemical structure and biological effects. Antimicrob. Agents Chemother. 15 (1979) 716-722.
  • 10.Brajtburg, J., Medoff, G., Kobayashi, G.S., Elberg, S. and Finegold, C. Permeabilizing and hemolytic action of large and small polyene antibiotics on human erythrocytes. Antimicrob. Agents Chemother. 18 (1980) 586-592.
  • 11.Cohen, B.E. Concentration- and time-dependence of amphotericin B-induced permeability changes across ergosterol-containing liposomes. Biochim. Biophys. Acta 857 (1986) 117-122.
  • 12.Cohen, B.E. A sequential mechanism for the formation of aqueous channels by amphotericin B in liposomes. The effect of sterols and phospholipid composition. Biochim. Biophys. Acta 1108 (1992) 49-58.
  • 13.Cotero, B.V., Rebolledo-Antunez, A. and Ortega-Blake, I. On the role of sterol in the formation of the amphotericin B channel. Biochim. Biophys. Acta 1375 (1998) 43-51.
  • 14.Milhaud, J. Permeabilizing action of filipin III on model membranes through a filipin-phospholipid binding. Biochim. Biophys. Acta 1105 (1992) 307-318.
  • 15.Wolf, B. and Hartsel, S. Osmotic stress sensitizes sterol-free phospholipid bilayers to the action of amphotericin B. Biochim. Biophys. Acta 1238 (1995) 156-162.
  • 16.Ruckwardt, T., Scott, A., Scott, J., Mikulecky, P. and Hartsel, S.C. Lipid and stress dependence of amphotericin B ion selective channels in sterol-free membranes. Biochim. Biophys. Acta 1372 (1998) 283-288.
  • 17.Gruszecki, W., Gagoś, M. and Kernen, P. Polyene antibiotic amphotericin B in monomolecular layers: Spectrophotometric and scanning force microscopic analysis. FEBS Lett. 524 (2002) 92-96.
  • 18.Dennis, V.W., Stead, N.W. and Andreoli, T.E. Molecular aspects of polyene-and sterol-dependent pore formation in thin lipid membranes. J. Gen. Physiol. 55 (1970) 375-400.
  • 19.Fournier, L., Barwicz, J. and Tancrede, P. The structure effects of amphotericin B on pure and ergosterol or cholesterol-containing dipalmitoylphosphatidylcholine bilayers: a differential scanning calorimetry study. Biochim. Biophys. Acta 1373 (1998) 76-86.
  • 20.De Kruijff, B. and Demel, R.A. Polyene antibiotic-sterol interaction in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim. Biophys. Acta 339 (1974) 57-70.
  • 21.Holz, R. and Finkelstein, A. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56 (1970) 125-145.
  • 22.Deuticke, B., Kim M. and Zolner, Ch. The influence of amphotericin B on the permeability of mammalian erythrocytes to nonelectrolytes, anions and cations. Biochim. Biophys. Acta 318 (1973) 345-359.
  • 23.Bonilla-Marin, M., Moreno-Bello, M. and Ortega-Blake, I. A microscopic electrostatic model for the amphotericin B channel. Biochim. Biophys. Acta 1061 (1991) 65-77.
  • 24.Kleinberg, M.E. and Finkelstein, A. Single-length and double-length channels formed by nystatin in lipid bilayer membranes. J. Membr. Biol. 80 (1984) 257-269.
  • 25.Cohen, B.E. Amphotericin B toxicity and lethality: a tale of two channels. Int. J. Pharm. 162 (1998) 95-106.
  • 26.Silberstein, A. Conformational analysis of amphotericin B-cholesterol channel complex. J. Membr. Biol. 162 (1998) 117-126.
  • 27.Cass, A., Finkelstein, A. and Krespi, V. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56 (1970) 100-124.
  • 28.Moreno-Bello, M., Bonilla, M. and Gonzalez-Beltran, A. Distribution of pore sizes in black lipid membranes treated with nystatin. Biochim. Biophys. Acta 944 (1988) 97-100.
  • 29.Bagiński, M., Resat, H. and McCammon, A. Molecular properties of amphotericin B membrane channel: a molecular dynamics simulation. Mol. Pharmacol. 52 (1997) 560-570.
  • 30.Andreoli, T.E., Dennis, V.W. and Weigl, A.M. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes. J. Gen. Physiol. 53 (1969) 133-156.
  • 31.El-Sufi, S.A.F., Sabirow, P.Z., Krasilnikow, O.B. and Taszmuhamedow, B.A. The size of amphotericin B pore in erythrocyte membrane. Dokl. Acad. Sci. USSR 317 (1991) 480-481.
  • 32.Knopik-Skrocka, A. and Bielawski, J. The mechanism of the hemolytic activity of polyene antibiotics. Cell. Mol. Biol. Lett. 7 (2002) 31-48.
  • 33.Bielawski, J. Two types of hemolytic activity of detergents. Biochim. Biophys. Acta 1035 (1990) 214-217.
  • 34.Krawczyk, J. and Cukierman, S. The nature of the conductance increase induced by filipin in cholesterol containing planar lipid bilayers. Biochim. Biophys. Acta 1063 (1991) 60-66.
  • 35.Behnke, O., Traunum-Jensen, J. and Van Derus, B. Filipin as a cholesterol probe. Filipin-cholesterol interaction in red blood cell. Eur. J. Cell Biol. 35 (1984) 200-215.
  • 36.Mrówczyńska, L. and Bielawski, J. The mechanism of bile salts-induced hemolysis. Cell. Mol. Biol. Lett. 6 (2001) 881-895.
  • 37.Rogers, W. and Glaser, M. Distributions of proteins and lipids in the erythrocyte membrane. Biochem. 32 (1993) 12591-12598.
  • 38.Bielawski, J., Knopik, A. and Szczuka, E. Damage of erythrocyte membrane induced by digitonin. Biol. Bull. Poznań 33 (1996) 41-52.
  • 39.Cass, A. and Dalmark, M. Equilibrium dialysis of ions in nystatin-treated red cells. Nature New Biol. 244 (1973) 47-49.
  • 40.Abu-Salah, K.M., Sedrani, S.H., Tobia, A.S., Gambo, H.A. Influence of amphotericin B on the transport of phosphate, sulphate and potassium ions across the human erythrocyte membrane. Acta Haematol. 79 (1988) 77-80.
  • 41.Kamowsky, M.J., Kleinfeld, A.M., Hoover, R.L. and Klausner, R.D. The concept of lipid domains in membranes. J. Cell Biol. 94 (1982) 1-6.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-26f8c912-5c01-4199-9e34-5de1e618bc17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.