PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 3 |

Tytuł artykułu

Design of a knowledge-based force field for off-lattice simulations of protein structure

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Prediction of protein structure from amino-acid sequence still continues to be an unsolved problem of theoretical molecular biology. One approach to solve it is to construct an appropriate (free) energy function that recognizes the native structures of some selected proteins (whose native structures are known) as the ones distinctively lowest in (free) energy and then to carry out a search of the lowest-energy structure of a new protein. In order to reduce the complexity of the problem and the cost of energy evaluation, the so-called united-residue representation of the polypeptide chain is often applied, in which each amino-acid residue is represented by only a few interaction sites. Once the global energy minimum of the simplified chain has been found, the all-atom structure can easily and reliably be constructed. The search of the lowest-energy structure is usually carried out by means of Monte Carlo meth­ods, though use of more efficient global-optimization methods, especially those of deformation of original energy surface is potentially promising. Monte Carlo search of the conformational space can be accelerated greatly, if the chain is superposed on a discrete lattice (the on-lattice approach). On the other hand, the on-lattice approach prohibits the use of many efficient global-optimization methods, because they require both energy and its space derivatives. The on-lattice methods in which the chain is embedded in the continuous 3D space are, therefore, also worth developing. In this paper we summarize the work on the design and implementation of an off-lattice united-residue force field that is underway in our group, in cooperation with Professor H.A. Scheraga of Cornell University, U.S.A.

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.527-547,fig.

Twórcy

autor
  • University of Gdansk, J.Sobieskiego 18, 80-952 Gdansk, Poland; E-mail: adam@sun1.chem.univ.gda.pl
autor
autor

Bibliografia

  • 1. Joncs, T.A. & Thirup, S. (1991) Using known substructures in protein model building and crystallography. EM BO J. 5. 819-822.
  • 2. Clark, D.A., Shirazi, J. & Rawlings, C.J. (1991) Protein topology prediction through constraint-based approach and the evaluation of topological folding rules. Protein Eng. 7, 751-760.
  • 3. Rooman, M.J. & Wodak, S.J. (1992) Extract­ing information on folding from the amino acid sequence: Consensus regions with pre­ferred configuration in homologous proteins. Biochemistry SI, 10239-10249.
  • 4. Johnson, M.S., Overington, J.P. & Blundel, T.L. (1993) Alignment and searching for com­mon protein folds using a data bank of struc­tural templates. J. Mol. Biol. 231, 735-752.
  • 5. Fischer, D., Rice, D., Bowie, J.U. & Risenberg, L). (1996) Assigning amino acid sequences to 3-dimensional protein folds. FASEB J. 10, 126-136.
  • 6. Anfinsen, C.R. (1973) Principles that govern the folding of protein chains. Science 181, 223-230.
  • 7. Levinthal, C. (1968) Are there pathways for protein folding? J. Chern. Phys. 65, 44-45.
  • 8. Sali, A., Shaknovich, E.I. & Karplus. M. (1994) How does a protein fold? Nature 369 248-251.
  • 9. Goldstein, R.A., Luthey-Schulten, Z.A. & Wolynes, P.G. (1992) Protein tertiary struc­ture recognition using optimized Hamiltoni- ans with local interactions. Proc. Natl. Acad. Sei. U.S.A. 89, 9029-9033.
  • 10. Ilao, M.-II. & Scheraga, H.A. (1994) Statisti­cal thermodynamics of protein folding: Se­quence dependence. J. Phys. Chern. 98, 9882 9893.
  • 11. Ilao, M.-H. & Scheraga, H.A. (1996) How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sei. U.S.A. 93, 4984—4989.
  • 12. Scheraga, H.A. (1992) Some approaches to the multiple-minima problem in the calculation of polypeptide and protein structures. Int. J. Quant. Chern. 42, 1529-1536.
  • 13. Vasquez, M.. Nemethy, G. & Scheraga. H.A. (1994) Conformational energy calculations on polypeptides and proteins. Chem. Rev. 94, 2183-2239.
  • 14. Scheraga, H.A. (1996) Recent developments in the theory of protein folding: Searching for the global energy minimum. Biophys. Chem. 59,329 339.
  • 15. Piela, L. & Scheraga, H.A. (1987) On the multiple-minima problem in the conforma­tional analysis of polypeptides. I. Backbone degrees of freedom for a perturbed cx-helix. Biopolymers 26, S33-S58.
  • 16. Li, Z. & Scheraga, H.A. (1987) Monte Carlo- minimization approach to the multiple-min- ima problem in protein folding. Proc. Natl. Acad. Sei. U.S.A. 84, 6611-6615.
  • 17. Li, Z. & Scheraga, H.A. (1988) Structure and free energy of complex thermodynamic sys­tems. J. Mol. Struct. (Theochem.J 179, 333- -352.
  • 18. Ripoll, D.R. & Scheraga, H.A. (1988) On the multiple-minima problem in the conforma­tional analysis of polypeptides. II. An electro­statically driven Monte Carlo method — tests on poIy(L-alanine). Biopolymers 27, 1283- -1303.
  • 19. Piela, L., Kostrowicki, J. & Scheraga, H.A. (1989) The multiple-minima problem in the conformational analysis of molecules. Defor­mation of the potential energy hypersurface by the diffusion equation method. J. Phys. Chem. 93, 3339-3346.
  • 20. Kostrowicki, J. & Scheraga, H.A. (1992) Ap­plication of the diffusion equation method for global optimization to oligopeptides. J. Phys. Chem. 96, 7442-7449.
  • 21. Olszewski, K.A., Piela. L. & Scheraga, H.A. (1992) Mean field theory as a tool for intra­molecular conformational optimization. 1. Tests on terminally-blocked alanine and Met- enkephalin. J. Chem. Phys. 96, 4672-^1676.
  • 22. Oresic, M. & Shalloway. D. (1994) Hierarchi­cal characterization of energy land scapes using Gaussian packet states. J. Chem. Phys. 101. 9844-9857.
  • 23. Amara, P., Hsu, D. & Straub, J.E. (1993) Global energy minimum search using an ap­proximate solution of the imaginary time Schrodinger equation. J. Phys. Chem. 97, 6715-6721.
  • 24. Pillardy, J., Olszewski, K.A. & Piela. L. (1992) Theoretically predicted lowest-energy struc­tures of water clusters. J. Mol. Struct. 270, 277-285.
  • 25. Levitt, M. & Warshell, A. (1975) Computer simulation of protein folding. Nature 253, 694-698.
  • 26. Levitt, M. (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J. Mot. Biol. 104, 59-107.
  • 27. Pincus, M.R. & Scheraga, H.A. (1977) An approximate treatment of long-range interac­tions in proteins. J. Phys. Chem. 81, 1579- -1583.
  • 28. Gerber, P.R. (1992) Peptide mechanics: A force field for peptides and proteins working with entire residues as smallest units. Biopo­lymers 32. 1003-1017.
  • 29. Wallqvist, A. & Ullner, M. (1994) A simplified amino acid potential for use in structure pre­dictions of proteins. Proteins 18, 267-280.
  • 30. Tanaka, S. & Scheraga, H.A. (1976) Medium- and long-range interaction parameters be­tween amino acids for predicting three-di­mensional structure of proteins. Macromole- cules 9, 945-950.
  • 31. Miyazawa, S. & Jernigan, R.L. (1985) Estima­tion of effective interresiduc contact energies from protein crystal structures: Quasi-chemi­cal approximation. Macromolecules 18, 534-552.
  • 32. Gregoret, L.M. & Cohen, F.E. (1990) Novel method for rapid evaluation of packing in protein structures. J. Mol. Biol. 211, 959- -974.
  • 33. Covell, D.G. (1992) Folding protein a-carbon chains in to compact forms by Monte Carlo methods. Proteins 14, 409-420.
  • 34. Hinds. D.A. & Levitt, M. (1994) Exploring conformational space with a simple lattice model for protein structure. J. Mol. Biol. 243, 668-682.
  • 35. Skolnick, J. & Koliński. A. (1990) Simulations of the folding of a globular protein. Science 250.1121-1125.
  • 36. Koliński, A. & Skolnick, J. (1992) Discretized model of proteins. I. Monte Carlo study of cooperativity in homopolypeptides. J. Chem. Phys. 97. 9412-9426.
  • 37. Koliński, A., Godzik. A. & Skolnick, J. (1993) A general method for the prediction of the three-dimensional structure and folding path­way of globular proteins: Application to de­signed helical proteins. J. Chem. Phys. 98, 7420-7433.
  • 38. Godzik, A., Koliński, A. & Skolnick, J. (1993) De novo and inverse folding predictions of protein structure and dynamics. J. Comput.- Aided Mol. Design 7. 397-438.
  • 39. Skolnick, J.. Koliński. A., Brooks, C.L., Godzik, A. & Rey, A. (1993) A method for predicting protein structure from sequence. Curr. Biol. 3, 414-424.
  • 40. Koliński, A. & Skolnick, J. (1994) Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18, 338-352.
  • 41. Koliński. A. & Skolnick, J. (1994) Monte Carlo simulations of protein folding. II. Application to protein A and crambin. Proteins 18, 353-366.
  • 42. Vieth, M., Koliński, A., Brooks. C.L. & Skol­nick, J. (1994) Prediction of the folding path­ways and structure of the GCN4 leucine zip­per. J. Mol. Biol. 237, 361-367.
  • 43. Koliński, A., Milik, M. & Skolnick. Z. (1995) A reduced model of short range interactions in polypeptide chains. J. Chem. Phys. 103, 4312-4323.
  • 44. Godzik, A. Koliński, A. & Skolnick, J. (1995) Arc proteins ideal mixtures of amino acids? Analysis of energy parameter set. Protein Sci. 4. 2107-2117.
  • 45. Hirst, J.D., Vieth, M., Skolnick, J. & Brooks III, C.L. (1996) Predicting leucine zipper structures from sequence. Protein Eng. 9, 657-662.
  • 46. DcBolt, S.E. & Skolnick. J. (1996) Evaluation of atomic level mean force potentials via in­verse folding and inverse refinement of pro­tein structures: Atomic burial position and pairwise non-bonded interactions. Protein Eng. 9, 637-655.
  • 47. Crippen, G.M. & Wiswanadhan, V.N. (1984) A potential function for conformational analy­sis of proteins. Int. J. Peptide Protein Res. 24. 279-296.
  • 48. Crippen, G.M. & Viswandhan, V.N. (1985) Sidechain and backbone potential function for conformational analysis of proteins. Int. J. Peptide Protein Res. 25. 487-509.
  • 49. Crippen, G.M. & Ponnuswamy, P.K. (1987) Determination of an empirical energy func­tion for protein conformational analysis by energy embedding. J. Comput. Chem. 8, 972-981.
  • 50. Crippen, G.M. & Snow, E. (1990) A 1.8 A resolution potential function for protein fold­ing. Biopolymers 29, 1479-1489.
  • 51. Seetharamulu, P. & Crippen, G.M. (1991) A potential function for protein folding. J. Math. Chem. 6. 91-110.
  • 52. Maiorov, V.N. & Crippen, G.M. (1992) Con­tact potential that recognizes the correct fold­ing of globular proteins. J. Mol. Biol. 227, 876-888.
  • 53. Crippen, G.M. (1996) Easily searched protein folding potentials. J. Mol. Biol. 231, 467-476.
  • 54. Nishikawa, K. & Matsuo, Y. (1993) Develop­ment of pseudoenergy potentials for assessing protein 3-D-l-D compatibility and detecting weak homologies. Protein Eng. 8, 811-820.
  • 55. Sippl, M.J. (1990) Calculation of conforma­tional ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular pro­teins. J. Mol. Biol. 213, 859-883.
  • 56. Casari, G. & Sippl, M.J. (1992) Structure-de­rived hydrophobic potential. Hydrophobic po­tential derived from X-ray structures of globu­lar proteins is able to identify native folds. J. Mol. Biol. 224, 725-732.
  • 57. Sippl, M.J. (1993) Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Corn- put.-Aided Mol. Design 7. 473-501.
  • 58. Sun, S. (1993) Reduced representation model of protein structure prediction: Statistical po­tential and genetic algorithms. Protein Sci. 2. 762-785.
  • 59. Li wo, A., Pincus, M.R., Wawak. R.J., Rack- ovsky, S. & Scheraga, H.A. (1993) Calculation of protein backbone geometry from a-carbon coordinates based on peptide-group dipole alignment. Protein Sci. 2. 1697-1714.
  • 60. Liwo, A., Pincus, M.R., Wawak. R.J., Rack- ovsky, S. & Scheraga, H.A. (1993) Prediction of protein conformation on the basis of a search for compact structures: Test on avian pancreatic polypeptide. Protein Sci. 2, 1715-1731.
  • 61. Liwo, A., Oldziej, St., ttncus, M.R., Wawak, R.J., Rackovsky, S. & Scheraga, H.A. (1997) A united-residue force field for off-lattice pro­tein-structure simulations. I: Functional forms and parameters of long-range side- chain interaction potentials from protein crys­tal data. J. Comput. Chem. 18, 849-873.
  • 62. Liwo, A., Pincus, M.R., Wawak, R.J., Rack- ovsky, S., Oldziej, St. & Scheraga, H.A. (1997) A united-residue force field for off-lattice pro­tein-structure simulations. II: Parameteriza­tion of local interactions and determination of the weights of energy terms by Z-score opti­mization. J. Comput. Chem. 18, 874-887.
  • 63. Liwo, A., Oldziej, St., Czaplewski, C., Groth, M., Kazmierkiewicz, R., Pincus, M.R., Wawak, R.J., Rackovsky, S. & Scheraga, H.A. (1996) A knowledge based united-residue force field for off-lattice calculations of protein structure that recognizes native folds. Inter­national Symposium on Theoretical and Ex­perimental Aspects of Protein Folding, San Luis, Argentina. 17-21 June, 1996; Liwo, A., Kazmierkiewicz, R., Czaplewski, C., Groth, M., Oldziej, St., Wawak, R.J., Rackovsky, S., Pincus, M.R. & Scheraga, H.A. (1996) Origin of backbone hydrogen-bonding cooperativity in united-residue potentials. Third Electronic Computational Chemistry Conference, ECCC- 3, Northern Illinois University, 1-30 Novem­ber 1996, Poster No. 19.
  • 64. Dill, K.A. (1990) Dominant forces in protein folding. Biochemistry 29, 7133-7155.
  • 65. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977) The Protein Data Bank: A com­puter-based archival file for macromolecular structures. J. Mol. Biol. 112. 535-542.
  • 66. Rackovsky, S. < 1990) Quantitative organiza­tion of the known protein X-ray structures. I. Methods and short-length-scale results. Pro­teins 7, 378-402.
  • 67. Reichl, R E. (1980) Modem Course in Statis­tical Mechanics; pp. 142-144, University of Texas Press, Austin.
  • 68. Burgi, H.B. & Dunitz, J.D. (1983) From crys­tal statics to chemical dynamics. Acc. Chem. Res. 16, 153-161.
  • 69. Momany, F.A., McGuire, R.F., Burgess, A.W. & Scheraga, H.A. (1975) Energy parameters in polypeptides. VII. Geometric parameters,partial atomic charges, nonbonded interac­tions, hydrogen bond interactions, and intrin­sic torsional potentials for the naturally oc­curring amino acids. J. Phys. Chem. 79. 2361-2381.
  • 70. Némethy, G. & Scheraga. H.A. (1983) Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interac­tions, and hydrogen bonding interactions for the naturally occurring amino acids. J. Phys. Chem. 87, 1883-1891.
  • 71. Metropolis, N., Rosenbluth, A.W., Rosen- bluth, M.N., Teller, A H. & Teller, E. (1953) Equation of state calculations by fast comput­ing machines. J. Chem. Phys. 21, 1087-1092.
  • 72. Sippl, M.J., Némethy, G. & Scheraga, H.A. (1984) Intramolecular potentials from crystal data. 6. Determination of empirical potentials for 0-H...0=C hydrogen bonds from packing configurations. J. Phys. Chem. 88, 6231- -6233.
  • 73. Némethy, G., Gibson, KD., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumsey, S. & Scheraga, H.A. (1992) Energy parame­ters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm with applica­tion to proline-containing peptides. J. Phys. Chem. 96, 6472-6484.
  • 74. Vila, J., Williams. R.L., Vâsquez, M. & Scher­aga. H.A. (1991) Empirical solvation models can be used to differentiate native from near- native conformations for bovine pancreatic trypsin inhibitor. Proteins 10. 199-218.
  • 75. Blundell, T.L., Pitts, J.E., Tickle, I.J., Wood, S.P. & Wu, C.-W. (1981 ) X-ray analysis (1.4 À resolution) of avian pancreatic polypeptide: Small globular protein hormone. Proc. Natl. Acad. Sci. U.S.A. 78. 4175-4179.
  • 76. Glover, I., Haneef, I., Pitts, J., Wood, S., Moss, D.. Tickle, I. & Blundell, T. (1983) Conforma­tional flexibility in a small globular hormone: X-ray analysis of avian pancreatic polypep­tide at 0.98 Â resolution. Biopolymers 22, 293-304.
  • 77. Noel ken, M.E., Chang, P.J. & Kimmel, J.R. (1980) Conformation and association of pan­creatic polypeptide from three species. Bio­chemistry 19, 1838-1843.
  • 78. Chang, P.J., Noelken, M.E. & Kimmel, J.R. (1980) Reversible dimerization of avian pan­creatic polypeptide. Biochemistry 19. 1844- -1849.
  • 79. Bersani, M., Johnsen, A.II., Hojrup, P., Dun­ning, B.E., Andreasen. J.J. & Hoist, J.J. (1991) Human galanin: Primary structure and identification of two molecular forms. FEBS Lett. 283, 189-194.
  • 80. Liwo, A., Oldziej, St., Ciarkowski, J., Ku- pryszewski, G., Pincus, M.R., Wawak, R.J., Rackovsky, S. & Scheraga, H.A. (1994) Pre­diction of conformation of rat galanin in the presence and absence of water with the use of Monte Carlo methods and the ECEPP/3 force field. J. Protein Chem. 13, 375-380.
  • 81. Morris, M.B., Ralstonc, G.B.. Biden, T.J., Browne, C.L, King, G.F. & Iismaa, T.P. (1995) Structural and biochemical studies of human galanin: NMR evidence for nascent helical structure in aqueous solution. Biochemistry 34, 4538-4545.
  • 82. Lee, J. (1993) New Monte Carlo algorithm: Entropie sampling. Phys. Rev. Lett. 71, 211- -214.
  • 83. Wawak, R.J., Gibson, K.D., Liwo, A. & Scher­aga, H.A. (1996) Theoretical prediction of a crystal structure. Proc. Natl. Acad. Sei. U.S.A. 93, 1743-1746.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-26f1fc19-9bde-4d72-9f52-39a5e8a9effe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.