PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2002 | 47 | 4 |

Tytuł artykułu

The maximum metabolizable energy intake and the relationship with basal metabolic rate in the striped hamster Cricetulus barabensis

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The maximum metabolizable energy intake (MEImax) of striped hamster Cricetulus barabensis (Pallas, 1773) was determined in gradually lowering temperature. The MEImax was gained at 0°C, 3.6 ± 0.1 kJ/(g x d) or 121.9 ± 4.9 kJ/d, which is 2.8 times the basal metabolic rate (BMR). This suggests that the actual energy budgets of striped hamsters in natural environment will keep near the upper physiological limit. As the temperature decreased, both metabolizable energy intake (MEI) and BMR increased though there was no significant correlation between the MEI and BMR or between the MEImax and BMR. However, the significant correlation between MEImax and BMR was found in nine species of rodents. Our results support the assimilation capacity model of the origin and evolution of endothermy at the interspecific level.

Wydawca

-

Czasopismo

Rocznik

Tom

47

Numer

4

Opis fizyczny

p.417-423,fig.,ref.

Twórcy

autor
  • Chinese Academy of Sciences, 19 Zhongguancun Rd., Haidian, Beijing, 100080, China
autor

Bibliografia

  • Bozinovic F. 1992. Scaling of basal and maximum metabolic rate in rodents and the aerobic capacity model for the evolution of endothermy. Physiological Zoology 65: 921-932.
  • Daan S., Masman D. and Groenewold A. 1990. Avian basal metabolic rates: their association with body composition and energy expenditure in nature. American Journal of Physiology 259: R333-R340.
  • Hammond K. A. and Diamond J. 1997. Maximal sustained energy budgets in humans and animals. Nature 386: 457-462.
  • Hayes J. P. and Garland T. Jr 1995. The evolution of endothermy: testing the aerobic capacity model. Evolution 49: 836-847.
  • Karasov W. H. 1981. Daily energy expenditure and the cost of activity in free-living mammal.Oecologia (Berlin) 51: 253-259.
  • Karasov W. H. 1986. Energetics, physiology and vertebrate ecology. Trends in Ecology and Evolution 1: 101-104.
  • Kleiber M. 1961. The fire of life. Wiley, New York: 1-454.
  • Konarzewski M. and Diamond J. 1994. Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physiological Zoology 67: 1186-1212.
  • Koteja P. 1995. Maximum cold-induced energy assimilation in a rodent, Apodemus flavicollis. Comparative Biochemistry and Physiology 112A: 479-485.
  • Koteja P. 1996. Limits to the energy budget in a rodent, Peromyscus maniculatus, does gut capacity set the limit? Physiological Zoology 69: 994-1020.
  • Koteja P. 2000. Energy assimilation, parental care and the evolution of endothermy. Proceedings of the Royal Society of London B 267: 479-484.
  • Koteja P., Krol E. and Stalinski J. 1994. Maximum cold- and lactation-induced rate of energy assimilation in Acomys cahirinus. Polish Ecological Studies 20: 369-374.
  • Liu H., Wang D. H. and Wang Z. W. 2002. Maximum metabolizable energy intake in the Mongolian gerbils (Meriones unguiculatus). Journal of Arid Environment 52 (in press).
  • Luo Z. X., Chen W. and Gao W. 2000. Fauna sinica: Mammalia, volume 6, Rodentia, Part III: Cricetidae. Science Press, Beijing, China: 28-38.
  • McDevitt R. M. and Speakman J. R. 1994. Central limits to sustainable metabolic rate have no role in cold acclimation of short-tailed field vole (Microtus agrestis). Physiological Zoology 67: 1117-1139.
  • Peterson C. C., Nagy K. A. and Diamond J. 1990. Sustained metabolic scope. Proceeding Natural Academic Science of USA 87: 2324-2329.
  • Song Z. G. and Wang D. H. 2001. The maximum energy assimilation rate in Brandt's vole (Microtus brandti) from Inner Mongolia grassland. Acta Theriologica Sinica 21: 271-278. SPSS. 1988. SPSS. Publishing House of Electronics Industry, Beijing.
  • Taigen T. L. 1983. Activity metabolism of anuran amphibians: implications for the origin of endo- thermy. The American Naturalist 121: 94-109.
  • Wang D. H., Sun R. Y. and Wang Z. W. 1996. The maximal assimilated energy of root vole (Microtus oeconomus). Acta Zoologica Sinica 42: 35-40.
  • Weiner J. 1987. Maximum energy assimilation rate in the Djungarian hamster (Phodopus sungorus). Oecologia (Berlin) 72: 297-302.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-26e96ca5-81e4-44e2-8dde-28d285d27e85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.