PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 3 |

Tytuł artykułu

Optimization of humic acids coagulation with aluminum and iron [III] salts

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Humic substances contained in ground and surface waters increase the degree of their pollution, give it a specific colour and contribute to the formation of toxic disinfection by-products in the process of water treatment. Coagulation is an effective method of removing organic compounds, including humic acids (HA), from water and wastewater. The proper selection of coagulants and optimization of such parameters as coagulant dose and the pH of the solution enable improvement of coagulation efficiency. The objective of the present study was to determine the efficiency of humic acids removal by coagulation, depending on the dose of Al and Fe(III) salts and pH of the analyzed solutions. A model alkaline solution and 0.2 M solutions of Al₂ (SO₄)₃ and Fe₂ (SO₄)₃ were used. The experiment was performed with and without pH adjustment, by a standard jar test procedure. COD-Cr [mg O₂ ·dm⁻³], colour – PtCo [mg·dm⁻³], turbidity – FTU [mg·dm⁻³], suspended solids – SS [mg·dm⁻³], pH and streaming potential – SP [mV] were determined during coagulation tests. In the solutions coagulated without pH adjustment and with the optimum doses of Al₂ (SO₄)₃ and Fe₂ (SO₄)₃ ,COD was at a level of 0.1 to 3% of the initial value and colour was removed almost completely. Iron(III) sulfate was found to be slightly more effective as a coagulant, in respect to COD removal. The results of electrokinetic measurements showed that the charge of molecules of humic colloids depends on the type and concentration of coagulating salt, as well as on the pH of the solution. The analysis of coagulation with pH adjustment revealed that there exists the optimum value of pH for each of the salt doses applied in the experiment. Coagulation with the use of Al₂ (SO₄)₃ and Fe₂ (SO₄)₃ proceeded at pH < 5.8 and pH < 4.2, respectively. A decrease in the pH of an HA solution allowed us to considerably (even eight-fold) reduce the dose of coagulants, maintaining high (above 94%) efficiency of humic acid removal by coagulation.

Wydawca

-

Rocznik

Tom

17

Numer

3

Opis fizyczny

p.397-403,fig.,ref.

Twórcy

autor
  • University of Warmia and Mazury, Plac Lodzki 4, 10-757 Olsztyn, Poland

Bibliografia

  • 1. KOOPAL L. K., VAN RIEMSDIJK W. H., KINNIBURGH D. G. Humic matter and contaminants. General aspects and modeling metal ion binding. Pure Appl. Chem., 73 (12), 2005, 2001.
  • 2. BOLLAG J.-M., DEC J. Characterization of the interaction between xenobiotic residues and humic substances. In: Humic substances and chemical contaminants. Soil Sci. Soc. Am. Inc., pp. 155-164, 2001.
  • 3. SZPAKOWSKA B., ŻYCZYŃSKA–BAŁONIAK I., STRIGUCKI W. P., MARYGANOWA W. W., PARMON S. W. Physico-chemical parameters of humic substances dissolved in water of agricultural landscape. Polish J. Soil Sci., Soil Chemistry, 27 (2), 103, 1994.
  • 4. NGUYEN K.L., LEWIS D.M. JOLLY M., ROBINSON J. Determination of soluble aluminium concentration in alkaline humic water using atomic absorption spectrophotometry. Water Res., 38, 4039, 2004.
  • 5. DZIEJOWSKI J. LIBECKI B., SMOCZYŃSKI L. The use of electrokinetic measurements in a study of pulp wastewater treatment with aluminum and iron (III) salts. Polish J. Chem.Technol., 7 (1), 13, 2005.
  • 6. GOLOB V., VINDER A., SIMONIC M. Efficiency of the coagulation/flocculation method for the treatment of dye-bath effluents. Dyes Pigments, 67, 93, 2005.
  • 7. LECHEVALLIER M. W., BABCOCK T. M., LEE R. G. Examination and characterization of distribution system biofilms. Appl. Environ. Microbiol., 53, 2714, 1987.
  • 8. RACZYK-STANISŁAWIAK U., ŚWIETLIK J., DĄBROWSKA A., NAWROCKI J. Biodegradability of organic by-products after natural organic matter oxitadion with ClO₂-case study. Water Res., 38 (4), 1044, 2004.
  • 9. TAO S. Fractionation and chlorination of organic carbon in water from Yinluan River, Tianjin, China. Geo Journal, 40, 213, 1996.
  • 10. MIETTINEN I.T., VARTIAINEN T., MARTIKAINEN P. Determination of assimilable organic carbon in humus-rich drinking waters. Water Res., 33 (10), 2277, 1999.
  • 11. US EPA National primary drinking water regulations: disinfectants and disinfection byproducts; Final rule. Federal register, 63 (241), 69389, 1998.
  • 12. BOLTO B., DIXON D., ELDRIDGE R., KING S. Cationic polymer and clay or metal oxide combinations for natural organic matter removal. Water Res., 35 (11), 266, 2001.
  • 13. O’MELIA CH. R., BECKER W. C., AU K.-K. Removal of humic substances by coagulation. Water Sci. Technol, 40 (9), 47, 1999.
  • 14. HAHN H. H., EPPLER B., KLUTE R. Comparison of wastewater flocculation in jar test experiments, continuous-flow reactors and large-scale plants. In: Chemistry of wastewater technology. Editor- Allan J. Rubin. Ann Arbor Science., 245, 1980.
  • 15. APHA, AWWA and WEF Standard methods for examination of water and wastewater, 19th ed. Washington, 1995.
  • 16. HERMANOWICZ W., DOJLIDO J., DOŻAŃSKA W., KOZIOROWSKI B., ZEBRA J., Physico-chemical investigation of water and wastewater. PWN Warszawa. 1999 [in Polish].
  • 17. BRYAN N.D., JONES M.N., BIRKETT J., LIVENS F.R. Aggregation of humic substances by metal ions measured by ultracentrifugation. Anal. Chim. Acta, 437, 291, 2001.
  • 18. DEMPSEY B. A., GANHO R. M., O’MELIA CH. R. The coagulation of humic substances by means of aluminum salts. J. AWWA, 76, 141, 1984.
  • 19. KOWALSKI T. Wpływ właściwości chemicznych zanieczyszczeń wód na dobór koagulantów. Ochrona Środowiska, 4 (59), 3, 1995.
  • 20. MAZET M., ANGBO L., SERPAUD B. Adsorption of humic acids onto preformed aluminium hydroxide flocs. Water Res., 24 (12), 1509, 1990.
  • 21. CHENG W. P. Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution. Chemosphere, 47, 963, 2002.
  • 22. JIANG J.-Q., GRAHAM N. J. D. Preliminary evaluation of the performance o new pre-polymerised inorganic coagulants for lowland surface water treatment. Water Sci. Technol., 37 (2), 127, 1998.
  • 23. WALL N. A., CHOPPIN G. R. Humic acids coagulation: influence of divalent cations. Appl. Geochem., 18, 1573, 2003.
  • 24. MASSION A., VILGE-RITTER A., ROSE J., STONE W. E. E., TEPPEN B. J., RYBACKI D., BOTTERO J-Y. Coagulation-flocculation of natural organic matter with Al salts: speciation and structure of the aggregates. Environ. Sci. Technol., 34 (15), 3242, 2000.
  • 25. ŚWIDERSKA-BRÓŻ M. Interaction of humic acids with cations of the coagulants and selected heavy metals. Archiwum Ochrony Środowiska, 1, 181, 1992 [in Polish].
  • 26. KAISER K. Fractionation of dissolved organic matter affected by polyvalent metal cations. Org. Geochem., 28 (12), 849, 1998.
  • 27. DUAN J., GREGORY J. Coagulation by hydrolyzing metal salts. Adv. Colloid Interfac., 100-102, 475, 2003.
  • 28. DENTEL S. K., KINGERY K. M. Using streaming current detectors in water treatment. J. Am. Water Works Assoc. 81, 85, 1989.
  • 29. KAM S., GREGORY J. Charge determination of synthetic cationic polyelectrolytes by colloid titration. Colloids Surf. A 159, 165, 1999.
  • 30. BOTTERO J.Y., BERSILLON J. L. Aluminum and iron(III) chemistry. Some implications for organic substance removal. Aquatic Humic Substances. Am. Chem. Soc., 1989.
  • 31. ROKOTONARIVO E., BOTTERO J. Y., CASES J. M., LEPRINCE A. Study of the adsorption of long chain sodium soaps from aqueous solutions on aluminum hydroxide gels. Colloids Surf. 16, 153, 1985.
  • 32. LICSKÓ I. Realistic coagulation mechanisms in the use of aluminium and iron (III) salts. Water Sci. Technol., 36, 103, 1997.
  • 33. LU X., CHEN Z., YANG X. Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation. Water Res., 33 (15), 3271, 1999.
  • 34. MARTIN R. B. Fe³⁺ and Al³⁺ hydrolysis equilibria. Cooperativity in Al³⁺ hydrolysis reactions. J. Inorg. Biochem., 44, 141, 1991.
  • 35. JIANG J.-Q., GRAHAM N. J. D. Observations of the comparative hydrolysis/precipitation behaviour of polyferic sulphate and ferric sulphate. Research note. Water Res., 32 (3), 930, 1998.
  • 36. AVENA M. J., KOOPAL L. K., VAN RIEMSDIJK W. H. Proton Binding to Humic Acids: Electrostatic and Intrinsic Interactions. J. Colloid Interf. Sci., 217, 37, 1999.
  • 37. BACHE D. H., RASOOL E., MOFFAT D., MCGILLIGAN F. J. On the strength and character of alumino-humic flocs. Water Sci. Technol., 40 (9), 81, 1999.
  • 38. GUSTAFSSON J. P. Modeling the acid–base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interf. Sci., 244, 102, 2001.
  • 39. YU J., SUN D. D., TAY J. H. Characteristic of coagulation of humic acid with effective performance of polymeric flocculant and inorganic coagulant. Water Sci. Technol., 47 (1), 86, 2003.
  • 40. DUAN J., GRAHAM N. J. D., WILSON F. Coagulation of humic acid by ferric chloride in saline (marine) water conditions. Water. Sci. Technol., 47 (1), 41, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-2463b3dd-1aa1-4a76-a699-7bf049832aae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.