A theoretical model for predicting the free energy of binding between anthracycline antibiotics and DNA was developed using the electron density functional (DFT) and molecular mechanics (MM) methods. Partial DFT-ESP charges were used in calculating the MM binding energies for complexes formed between anthracycline antibiotics and oligodeoxynucleotides. These energies were then compared with experimental binding free energies. The good correlation between the experimental and theoretical energies allowed us to propose a model for predicting the binding free energy for derivatives of anthracycline antibiotics and for quickly screening new anthracycline derivatives.
1. Arcamone, F. & Cassinelli, G. (1998) Biosynthetic anthracyclines. Curr. Med. Chem. 5, 391-419.
2. Baginski, M., Fogolari, F. & Briggs, J.M. (1997) Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA. J. Mol. Biol. 274, 253-267.
3. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer E.E., Jr, Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977) The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535-542.
4. Chaires, J.B. (1990) Biophysical chemistry of the daunomycin-DNA interaction. Biophys. Chem. 35, 191-202.
5. Chaires, J.B. (1995a) Molecular recognition of DNA by daunorubicin; in Anthracycline Antibiotics: New Analogues, Methods of Delivery, and Mechanisms of Action, ACS Symposium Series 574 (Priebe, W., ed.) pp. 156-167, American Chemical Society, Washington, DC.
6. Chaires, J.B. (1995b) Daunomycin binding to DNA: From the macrosopic to the microscopic; in Molecular Basis of Specifity in Nucleic Acid-Drug Interactions (Pullman, B.& Jortner, J., eds.) pp. 123, Kluwer Academic Publishers.
7. Chaires, J.B., Satyanaraya, S., Dongchul, S., Fokt, I., Przewloka, T. & Priebe, W. (1995) Parsing the free energy of anthracycline antibiotic binding to DNA. Biochemistry 35, 2047-2053.
8. Chaires, J.B. (1996) Molecular recognition of DNA by daunorubicin; in Advances in DNA Sequence Specific Agents 2 (Hurley, L.H. & Chaires, J.B., eds.) pp. 141-167, JAI Press, Greenwich CT.
9. Chaires, J.B., Leng, F., Przewloka, T., Fokt, I., Ling, Y.H., Perez-Soler, R. & Priebe, W. (1997) Structure-based design of a new bisintercalating anthracycline antibiotic. J.Med. Chem. 40, 261-266.
10. Garrett, A.J.M. & Poladian, L. (1988) Refined derivation, exact solutions, and singular limits of the Poisson-Boltzmann equation. Ann. Phys. 188, 386-435.
11. Hermans, J., Mann, G., Wang, L. & Zhang, L. (1999) Simulation studies of protein-ligand interactions; in Computational Molecular Dynamics: Challenges, Methods, Ideas (Deuflhard, J., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S. & Skeel, R.D., eds.) (Lecture Notes in Computational Science and Engineering, 4), pp. 129-148, Springer.
12. Jayaram, B., McConnell, K.J., Dixit, S.B. & Beveridge, D.L (1999) Free energy analysis of protein-DNA binding: The £coRI endonuclease-DNA complex. J. Comp. Phys. 151, 333-357.
13. Lampidis, T.J., Kolonias, D., Podona, T., Israel, M., Safa, A.R., Lothstein, L., Savaraj, N., Tapiero, H. & Priebe, W. (1997) Circumvention of P-GP MDR as a function of anthracycline lipophilicity and charge. Biochemistry 36, 2679-2685.
14. Lesyng, B. & McCammon, J.A. (1993) Molecular modeling methods. Basic techniques and challenging problems. Pharmac. Ther. 60, 149- 167.
15. Molecular Simulations Inc. (1996) DMol, rel. 4.0. San Diego.
16. Molecular Simulations Inc. (1997a) InsightII, rel 97.0. San Diego.
17. Molecular Simulations Inc. (1997b) Discover 2.98. San Diego.
18. Molecular Simulations Inc. (1998) Cerius2 3.8, San Diego.
19. Priebe, W. & Perez-Soler, R. (1993) Design and tumor targeting of anthracyclines able to overcome multidrug resistance: A double-advantage approach. Pharmac. Ther. 60, 215-234.
20. Priebe, W. (1995) Anthracycline Antibiotics: New Analogues, Methods of Delivery and Mechanisms of Action; ACS Symposium Series 574. American Chemical Society, Washington, DC.
21. Rappe, A.K. & Goddard, W.A. (1991) Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358-3363.
22. Robinson, H., Priebe, W., Chaires, J.B. & Wang, A.H.-J. (1997) Binding of two novel bisdaunorubicins to DNA studied by NMR spectroscopy. Biochemistry 36, 8663-8670.
23. Rudnicki, W.R. & Lesyng, B. (1995) Applicability of commonly used atom-atom type potential energy functions in structural analysis of nucleic acids. The role of electrostatic interactions. Comp. & Chem. 19, 253-258.
24. Rudnicki, W.R. & Lesyng, B. (1997) Conformational correlations in DNA. Molecular dynamics studies. Molecular Simulation 19, 247-266.
26. Sussman, J.L., Lin, D., Jiang, J., Manning, N.O., Prilusky, J., Ritter, O. & Abola, E.E. (1998) Protein Data Bank (PDB): Database of three-dimensional structural information of biological macromolecules. Acta Cryst. D54, 1078-1084.
27. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.S., Ghio, C., Alagona, G., Profeta, S., Jr. & Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765-784.
28. Weiner, S.J., Kollman, P.A., Nguyen, D.T. & Case, D.A. (1986) An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 7, 230-252.
29. Weiss, R.B. (1992) The anthracyclines: Will we ever find a better doxorubicin? Semin. Oncol. 19, 670-686.