PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 2 |

Tytuł artykułu

Nanomaterials in electrochemical biosensors for food analysis - a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The interaction of nanotechnology and biosciences opens the possibility for a wide variety of biological research topics and day-to-day applications at the molecular and cellular level. In particular, nanotechnology has been revolutionizing the area of biosensor. Nanobiosensor, an integration of physical sciences, molecular engineering, biology, chemistry and biotechnology holds the possibility of detecting and manipulating atoms and molecules using nanodevices, which have the potential for a wide range of both industrial and domestic applications. The role of electrochemical nanobiosensor in food analysis is an important and interesting area. This review covers the basic principles and types of electrochemical biosensor formats, role of nanomaterials for biosensor and reported food-specific applications of electrochemical nanobiosensors.

Wydawca

-

Rocznik

Tom

58

Numer

2

Opis fizyczny

p.157-164,fig.,ref.

Twórcy

  • Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
autor

Bibliografia

  • 1. Abramson D., Hulasare R., York R.K., White N.D.G., Jayas D.S., Mycotoxins, ergosterol and odor volatiles in durum wheat during granary storage at 16% and 20% moisture content. J Stor. Prod. Res., 2005, 41, 67–76.
  • 2. Authier L., Grossiord C., Brossier P., Limoges B., Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal. Chem., 2001, 73, 4450–4456.
  • 3. Baeumner A.J., Cohen R.N., Miksic V., Min J., RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens. Bioelectron., 2003, 18, 405–413.
  • 4. Bakker E., Electrochemical sensors. Anal. Chem., 2004, 76, 3285–3298.
  • 5. Baughma R.H., Satishkumar C., Govindaraj A., Nath M., Nanotubes. Chem. Phys. Chem., 2001, 2, 79–105.
  • 6. Bonnemann H., Richards F.J.M., Nanoscopic metal particles - synthetic methods and potential applications. Eur. J. Inorg. Chem., 2001, 2001, 2455–2480.
  • 7. Cai H., Xu C., He P., Fang Y., Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J. Electroanal. Chem., 2001, 510, 78–85.
  • 8. Castellarnau M., Zine N., Bausells J., Madrid C., Ju´arez A., Samitier J., Errachid A., Integrated cell positioning and cell-based ISFET biosensors. Sens. Actuators, B, 2007, 120, 615–620.
  • 9. Chen J., Miao Y., He N., Wu X., Li., Nanotechnology and biosensor. Biotechnol. Adv., 2004, 22, 505–518.
  • 10. Cornell B.A., Braach-Maksvytis V.L.B., King L.G., Osman P.D.J., Raguse B., Wieczorek L., A biosensor that uses ion-channel switches. Nature, 1997, 387, 580–583.
  • 11. Cornell BA, Krishna G, Osman PD, Pace RD, Wieczorek L., Tethered bilayer lipid membranes as a support for membrane‑active peptides. Biochem. Soc. Trans., 2001, 29, 613–617.
  • 12. Presicce D.S., Fo´rrelo A., Taurino A.M., Zuppa M., Siciliano P., Laddomada B., Logrieco A., Visconti A., Response evaluation of an e-nose towards contaminated wheat by fusarium poae fungi. Sens. Actuators B, 2006, 118, 433–438.
  • 13. Deo R.P., Wang J., Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes. Electrochem. Com., 2004, 6, 284–287.
  • 14. Dequaire M., Degrand C., Limoges B., An electrochemical metallo immunoassay based on a colloidal gold label. Anal. Chem., 2000, 72, 5521–5528.
  • 15. Falasconi M, Gobbi E., Pardo M., Torre M.D., Bresciani A., Sberveglieri G., Detection of toxigenic strains of fusarium verticillioides in corn by electronic olfactory system. Sens. Actuators B, 2005, 108, 250.
  • 16. Wagner G., Guilbault G.G. (eds.), Food Biosensor Analysis. 1994, Marcel Dekker, New York, pp. viii + 257.
  • 17. Gooding J.J., Electrochemical DNA hybridization biosensors. Electroanalysis, 2002, 14, 1149–1156.
  • 18. Gooding J.J., Hibbert D.B., The application of alkanethiol self-assembled monolayers to enzyme electrodes. Trends Anal. Chem., 1999, 18, 525–533.
  • 19. Gooding J.J., Wibowo R., Liu J.Q., Yang W., Losic D., Orbons S., Mearns F.J., Shapter J.G., Hibbert D.B., Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc., 2003, 125, 9006–9007.
  • 20. Hernández-Santos D., González-García M.B., García A.C., Review: Metal-nanoparticles based electroanalysis. Electroanalysis, 2002, 14, 1225–1235.
  • 21. Jonsson A., Winquist F., Schnürer J., Sundgren H., Lundström I., Electronic nose for microbial quality classification of grains. Int. J. Food Microbiol., 1997, 35, 187–193.
  • 22. Kawde A-N, Wang J., Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis, 2004, 16, 101–107
  • 23. Krajewska A, Lhotak, P. Radecka H., Potentiometric responses of ion-selective electrodes doped with diureidocalix[4]arene towards un-dissociated benzoic acid. Sensors, 2007, 7, 1655–1666.
  • 24. Kurzątkowska K., Radecka H., Dehaen W., Wąsowicz M., Grzybowska I., Radecki J., Polymeric liquid membrane electrodes incorporated with undecylcalix[4]resorcinarene for screening of neutral forms of diaminobenzene isomers. Com. Chem. High T. Scr., 2007, 10, 604–610
  • 25. Lin Y., Lu F., Tu Y., Ren Z., Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett., 2004, 4, 191–195.
  • 26. Liu G., Lin Y., Ostatna V., Wang J., Enzyme nanoparticles-based electronic biosensor. Chem. Commun., 2005, 2727, 3481–3483.
  • 27. Malea K.B., Hrapovica S., Liua Y., Wang D., Luong J.H.T., Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta, 2004, 516, 35–41.
  • 28. Marc D, Sophie D.-C., Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron., 2003,18, 943–951
  • 29. Mello L.D., Kubota L.T., Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem., 2002, 77, 237–256.
  • 30. Miao Y., Qi M., Zhan S., He N., Wang J., Yuan C., Construction of a glucose biosensor immobilized with glucose oxidase in the film of polypyrrole nanotubules. Anal Lett., 1999, 32, 1287–1299.
  • 31. Min J.-H, Baeumner A.J., Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers. Electroanalysis, 2004, 16, 724–729.
  • 32. Mir M., Vreeke M., Katakis I., Different strategies to develop an electrochemical thrombin aptasensor. Electrochem. Com., 2006, 8, 505–511.
  • 33. Niemeyer C.M., Nanoparticles, Pproteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed., 2001, 40, 4129–4158.
  • 34. Olsson J., Borjesson T., Lundstedt T., Schnurer J., Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int. J. Food Microbiol., 2002, 72, 203–214.
  • 35. Palecek E., Fojta M., Detecting DNA hybridization and damage. Anal. Chem., 2001, 73, 74A–83A.
  • 36. Patel P.D., (Bio )sensors for measurement of analytes implicated in food safety: a review. Trends Anal. Chem., 2002, 21, 96–115.
  • 37. Patolsky F., Weizmann Y., Willner I., Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed., 2004, 43, 2113–2117.
  • 38. Pearson J.E., Gill A., Vadgama P., Analytical aspects of biosensors. Ann. Clin. Biochem., 2000, 37, 119–145.
  • 39. Peris M., Present and future of expert systems in food analysis. Anal. Chim. Acta, 2002, 454, 1–11.
  • 40. Qiaocui S., Tuzhi P., Yunu Z., Yang C.F., An electrochemical biosensor with cholesterol oxidase/ sol-gel film on a nanoplatinum/carbon nanotube electrode. Electroanalysis, 2005, 17, 857–861.
  • 41. Qua S., Wang J., Kong J., Yang P., Chen G., Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta, 2007, 71, 1096–1102 .
  • 42. Radecka H., Grzybowska I., Radecki J., Jakubowski P., Loteran S., Orlewska C., Maes W., Dehaen W., Salicylate determination in human plasma by ISEs incorporating Mn(III)-porphyrine and Zn(II)-dipyrromethene. Anal. Lett., 27, 4, 387–401.
  • 43. Radecki J., Radecka H., Piotrowski T., Depraetere S., Dehaen W., Plavec. J., Interface host-guest interaction between caix[4]pyrrole and neutral derivatives of phenol as the base for their potentiometric discrimination. Electroanalysis, 2004, 16, 2073–2081.
  • 44. Radecki J., Stenka I., Dolusic E., Dehaen W., Corroles as receptors in liquid membrane electrodes and their potentiometric response towards salicylic acid. Electrochim. Acta, 2006, 51, 2282–2288.
  • 45. Radecki J., Dehaen W., Nitrogen-containing macrocycles as host molecules for the recognition of undissociated phenol derivatives: mechanism of potentiometric signal generation. Comb. Chem. High T. Scr., 2006, 9, 399–406.
  • 46. Riu J., Maroto A., Rius F.X., Nanosensors in environmental analysis. Talanta, 2006, 69, 288–301
  • 47. Rudnitskaya A.L.A., Boris S., Yuri1 V., Recognition of liquid and flesh food using an electronic tongue. Int. J. Food Sci. Tech., 2002, 37, 375–385.
  • 48. Schulze H., Scherbaum E., Anastassiades M., Vorlov S., Schmid R.D., Bachmann T.T., Development, validation, and application of an acetylcholinesterasebiosensor test for the direct detection of insecticide residues in infant food. Biosens. Bioelectron., 2002, 17, 1095–1105.
  • 49. Siwy Z., Troffin L., Kohli P., Baker L.A., Trautmann C., Martin C.R, Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc, 2005, 127, 5000–5001.
  • 50. Stobiecka A., Radecka H., Radeck J., Novel voltammetric biosensor for determining acrylamide in food samples. Biosens. Bioelectron, 2007, 22, 2165–2170
  • 51. Szymanska I., Radecka H., Radecki J., Kikut-Ligaj D., Fullerene modified supported lipid membrane as sensitive element of sensor for odorants. Biosens. Bioelectron., 2001, 16, 911–915.
  • 52. Vamvakaki V., Chaniotakis N.A., Pesticide detection with a liposome-based nanobiosensor. Biosens. Bioelectron. 2007, 22, 2848–2853.
  • 53. Venugopal V., Biosensors in fish production and quality control. Biosens. Bioelectron., 2002, 17, 147–157.
  • 54. Vidic J.M., Grosclaude J., Persuy M.A., Aioun J., Salesse R., Pajot-Augy E., Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip, 2006, 6, 1026–1032.
  • 55. Viswanathan S., Wu L.-C., Huang M.-R., Ho J.-A.A., Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal. Chem., 2006, 78,1115–1121.
  • 56. Wang J., Nanomaterial-based electrochemical Biosensors. Analyst, 2005, 130, 421–426.
  • 57. Wang J., Portable electrochemical systems. Trends Anal. Chem., 2002, 21, 226.
  • 58. Wang J., Real-time electrochemical monitoring: toward green analytical chemistry. Acc. Chem. Res., 2002, 35, 811–816.
  • 59. Wang J., Xu D., Kawde A. N., Polsky R., Metal nanoparticle‑based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem., 2001, 73, 5576–5581.
  • 60. Yu X., Chattopadhyay D., Galeska I., Papadimitrakopoulos F., Rusling J.F., Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun., 2003, 5, 408–411.
  • 61. Zaytsev N.V., Goral V.N., Montagn R.A., Baeumner A.J., Development of a microfluidic biosensor module for pathogen detection. Lab Chip, 2005, 5, 805–811.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-22902b7e-6bc3-4cc0-93ee-fd5d64082c6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.