PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 1 |

Tytuł artykułu

Mice lacking cannabinoid CB1-, CB2-receptors or both receptors show increased susceptibility to trinitrobenzene sulfonic acid [TNBS]-induced colitis

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was performed to assess whether mice lacking the cannabinoid receptor CB1, CB2 or both receptors show increased susceptibility to TNBS colitis in comparison to wildtype mice. Previously, activation of CB1 and CB2 receptors showed attenuation of TNBS colitis in mice. The aim of the study was to investigate the susceptibility of three mouse strains CB1-, CB2- and CB1+2 double knockout mice in the model of TNBS colitis. The different knockout mice were given each a single enema with TNBS 7 mg, volume 150 µl (in 50% ethanol solution) on day 1. Control group (C57BL/6 mice) received the same concentration of TNBS enema and each strain received vehicle application of 150 µl 50% ethanol solution. After a 3-day period, the animals were sacrificed and their colon excised. A scoring system was used to describe macroscopical and histological changes. Messenger RNA-expression of TNF- and IL-1ß as pro-inflammatory markers was measured by RT-PCR. All three knockout strains showed increased susceptibility to TNBS colitis quantified by macroscopical and histological scoring systems and pro-inflammatory cytokine expression in comparison to the TNBS control group (wild type C57BL/6 animals). Mice lacking the CB1-, CB2-receptor or both receptors showed aggravation of inflammation in the model of TNBS colitis. Lacking of both cannabinoid receptors did not result in potentiation of colitis severity compared to lacking of each CB1 or CB2, respectively. These results suggest that the endocannabinoid system may have tonic inhibitory effects on inflammatory responses in the colon.

Wydawca

-

Rocznik

Tom

61

Numer

1

Opis fizyczny

p.89-97,fig.,ref.

Twórcy

autor
  • University of Erlangen-Nuremberg, Ulmenweg 18, D-91054 Erlangen, Germany
autor
autor
autor

Bibliografia

  • Di Carlo G, Izzo AA. Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs 2003; 12(1): 39-49.
  • Zurier RB. Prospects for cannabinoids as anti-inflammatory agents. J Cell Biochem 2003; 88(3): 462-466.
  • Richardson JD, Kilo S, Hargreaves KM. Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 1998; 75(1): 111-119.
  • Dembinski A, Warzecha Z, Ceranowicz P, et al. Cannabinoids in acute gastric damage and pancreatitis. J Physiol Pharmacol 2006; 57(Suppl 5): 137-54.
  • Pertwee RG. Cannabinoids and the gastrointestinal tract. Gut 2001; 48(6): 859-867.
  • Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S. Localisation of cannabinoid CB1 receptor immunoreactivity in the guinea pig and rat myenteric plexus. J Comp Neurol 2002; 448(4): 410-22.
  • Pinto L, Izzo AA, Cascio MG, et al. Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology 2002; 123(1): 227-234.
  • Jaggar SI, Sellaturay S, Rice AS. The endogenous cannabinoid anandamide, but not the CB2 ligand palmitoylethanolamide, prevents the viscero-visceral hyper-reflexia associated with inflammation of the rat urinary bladder. Neurosci Lett 1998; 253(2): 123-126.
  • Izzo AA, Fezza F, Capasso R, et al. Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol 2001; 134(3): 563-570.
  • Izzo, AA, Mascolo N, Capasso F. The gastrointestinal pharmacology of cannabinoids. Curr Opin Pharmacol 2001; 1(6): 597-603.
  • Storr M, Sibaev A, Marsicano G, et al. Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon. Am J Physiol Gastrointest Liver Physiol 2004; 286(1): 110-117.
  • Darmani NA. Delta(9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB(1) receptor antagonist/ inverse agonist SR 141716A. Neuropsychopharmacology 2001; 24: 198-203.
  • Van Sickle MD, Oland LD, Ho W, et al. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology 2001; 121: 767-774.
  • Adami M, Frati P, Bestini S, et al. Gastric antisecretory role and immunohistochemical localization of cannabinoid receptors in the rat stomach. Br J Pharmacol 2002; 135: 1598-1606.
  • Lehmann A, Blackshaw LA, Branden L, et al. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology 2002; 123: 1129-1134.
  • Pinto L, Izzo AA, Cascio MG, et al. Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology 2002; 123: 227-234.
  • Casu MA, Porcella A, Ruiu S, et al. Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Eur J Pharmacol 2003; 459: 97-105.
  • Duncan M, Davison JS, Sharkey KA. Endocannabinoids and their receptors in the enteric nervous system. Aliment Pharmacol Ther 2005; 22: 667-683.
  • Derbenev AV, Stuart TC, Smith BN. Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve. J Physiol 2004; 559: 923-938.
  • Burdyga G, Varro A, Dimaline R, et al. Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB-1 and MCH receptor abundance. Am J Physiol Gastrointest Liver Physiol 2006; 290: 1289-1297.
  • Kulkarni-Narla A, Brown DR. Localization of CB1-cannabinoid receptor immunoreactivity in the porcine enteric nervous system. Cell Tissue Res 2000; 302: 73-80.
  • MacNaughton WK, Van Sickle MD, Keenan CM, et al. Distribution and function of the cannabinoid-1 receptor in the modulation of ion transport in the guinea pig ileum: relationship to capsaicin-sensitive nerves. Am J Physiol Gastrointest Liver Physiol 2004; 286: 863-871.
  • Mascolo N, Izzo AA, Ligresti A, et al. The endocannabinoid system and the molecular basis of paralytic ileus in mice. FASEB J 2002; 16: 1973-1975.
  • Pinto L, Izzo AA, Cascio MG, et al. Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology 2002; 123: 227-234.
  • Wotherspoon G, Fox A, McIntyre P, Colley S, Bevan S, Winter J. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience 2005; 135(1): 235-245.
  • Storr MA, Keenan CM, Emmerdinger D, et al. Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med 2008; 86(8): 925-936.
  • Maggi CA. The effects of tachykinins on inflammatory and immune cells. Regul Pept 1997; 70: 75-90.
  • Holzer P. Implications of tachykinins and calcitonin gene-related peptide in inflammatory bowel disease. Digestion 1998; 59(4): 269-283.
  • Wright K, Rooney N, Feeney M, et al. Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 2005; 129: 437-453.
  • Wright KL, Duncan M, Sharkey KA. Cannabinoid CB(2) receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol 2008; 153: 263-270.
  • Massa F, Marsicano G, Hermann H, et al. The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 2004; 113: 1202-1209.
  • Kimball ES, Schneider CR, Wallace NH, et al. Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol 2006; 291: 364-371.
  • D’Argenio G, Valenti M, Scaglione G, et al. Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J 2006; 20: 568-570.
  • Engel MA, Kellermann CA, Rau T, Hahn EG, Konturek PC. Ulcerative colitis in AKR mice is attenuated by intraperitoneally administered anandamide. J Physiol Pharmacol 2008; 59(4): 673-689.
  • Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc 2007; 2(3): 541-546.
  • Massa F, Sibaev A, Marsicano G, Blaudzun H, Storr M, Lutz B. Vanilloid receptor (TRPV1)-deficient mice show increased susceptibility to dinitrobenzene sulfonic acid induced colitis. J Mol Med 2006; 84(2): 142-146.
  • Di Marzo V, Izzo AA. Endocannabinoid overactivity and intestinal inflammation. Gut 2006; 55(10): 1373-1376.
  • Keates AC, Castagliuolo I, Cruickshank WW, et al. Interleukin 16 is up-regulated in Crohn’s disease and participates in TNBS colitis in mice. Gastroenterology 2000; 119(4): 972-982.
  • Kimball ES, Wallace NH, Schneider CR, D’Andrea MR, Hornby PJ. Vanilloid receptor 1 antagonists attenuate disease severity in dextran sulphate sodium-induced colitis in mice. Neurogastroenterol Motil 2004; 16(6): 811-818.
  • Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 2006; 1(2): 581-585.
  • Harsch IA, Brzozowski T, Bazela K, et al. Impaired gastric ulcer healing in diabetic rats: role of heat shock protein, growth factors, prostaglandins and proinflammatory cytokines. Eur J Pharmacol 2003; 481: 249-260.
  • Konturek PC, Brzozowski T, Sulekova Z, Meixner H, Hahn EG, Konturek SJ. Enhanced expression of leptin following acute gastric injury in rat. J Physiol Pharmacol 1999; 50(4): 587-595.
  • Mazzari S, Canella R, Petrelli L, Marcolongo G, Leon A. N-(2 hydroxyethyl) hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation. Eur J Pharmacol 1996; 300: 227-236.
  • Parolaro D. Presence and functional regulation of cannabinoid receptors in immune cells. Life Sci 1999; 65: 637-644.
  • Massi P, Fuzio, D, Vigano D, Sacerdote P, Parolaro D. Relative involvement of cannabinoid CB1 and CB2 receptors in the D9-tetrahydrocannabinol-induced inhibition of natural killer activity. Eur J Pharmacol 2000; 387: 343-347.
  • Sacerdote P, Massi P, Panerai AE, Parolaro D. in vivo and in vitro treatment with the synthetic cannabinoid CP55,940 decreases the in vitro migration of macrophages in the rat: involvement of both CB1 and CB2 receptors. J Neuroimmunol 2000; 109: 155-163.
  • Thuru X, Chamaillard M, Karsak M, et al. Cannabinoid receptor 2 is required for homeostatic control of intestinal inflammation. Gastroenterology 2007; 132(Suppl 2): 228.
  • Ziring DA, Braun J. AM1241, a CB2-specific agonist protects against immune but not acute colitis. Gastroenterology 2007; 132(Suppl 2): 232.
  • Ziring D, Wei B, Velazquez P, Schrage M, Buckley NE, Braun J. Formation of B and T cell subsets require the cannabinoid receptor CB2. Immunogenetics 2006; 58: 714-725.
  • Ihenetu K, Molleman A, Parsons ME, et al. Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids. Eur J Pharmacol 2003; 458: 207-215.
  • Goso C, Evangelista S, Tramontana M, et al. Topical capsaicin administration protects against trinitrobenzene sulfonic acid-induced colitis in the rat. Eur J Pharmacol 1993; 249(2): 185-190.
  • Leung FW. Role of capsaicin-sensitive afferent nerves in mucosal injury and injury-induced hyperemia in rat colon. Am J Physiol 1992; 262: 332.
  • Endoh K, Leung FW. Topical capsaicin protects the distal but not the proximal colon against acetic acid injury. Gastroenterology 1990; 98: A446.
  • Eysselein VE, Reinshagen M, Cominelli F, et al. Calcitonin gene-related peptide and substance P decrease in the rabbit colon during colitis. Gastroenterology 1991; 101: 1211.
  • Renzi D, Tramontana M, Panerai C, et al. Decrease of calcitonin gene-related peptide (CGRP), but not of vasoactive intestinal polypeptide (VIP) and substance P (SP) in the TNB-induced experimental colitis in rats. Neuropeptides 1992; 22: 56.
  • Reinshagen M, Flamig G, Ernst S, et al. Calcitonin gene-related peptide mediates the protective effect of sensory nerves in a model of colonic injury. J Pharmacol Exp Ther 1998; 286(2): 657-661.
  • Ahluwalia J, Urban L, Bevan S, Nagy I. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 2003; 17(12): 2611-2618.
  • Fujino K, Takami Y, de la Fuente SG, et al. Inhibition of the vanilloid receptor subtype-1 attenuates TNBS-colitis. J Gastrointest Surg 2004; 8(7): 842-827.
  • Kihara N, de la Fuente SG, Fujino K, et al. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut 2003; 52(5): 713-719.
  • Holzer P, Gamse R, Lembeck F. Distribution of substance P in the rat gastrointestinal tract-lack of effect of capsaicin pretreatment. Eur J Pharmacol 1980; 61(3): 303-307.
  • Movahed P, Evilevitch V, Andersson TL. Vascular effects of anandamide and N-acylvanillylamines in the human and skin microcirculation. Br J Pharmacol 2005; 146: 179-179.
  • Malinowska B, Lupinski S, Godlewski G, Baranowska U, Schlicker E. Role of endocannabinoids in cardiovascular shock. J Physiol Pharmacol 2008; 59(Suppl 8): 91-107.
  • Zygmunt PM, Petersson J, Andersson DA, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999; 400: 452-457.
  • Menchen LA, Colon AL, Moro MA, et al. N-(3-(aminomethyl)benzyl)acetamidine, an inducible nitric oxide synthase inhibitor, decreases colonic inflammation induced by trinitrobenzene sulfonic acid in rats. Life Sci 2001; 69(4): 479-491.
  • Kankuri E, Vaali K, Knowles RG, et al. Supression of acute experimental colitis by a highly selective inducible nitric oxide synthase inhibitor, N-{3-(aminomethyl)benzyl}acetamidine. J Pharmacol Exp Ther 2001; 298: 1128-1132.
  • Vardareli E, Dundar E, Angin K, Saricam T, Inal M. Effects of intrarectal and intraperitoneal NG-nitro-L-arginine methyl ester treatment in 2,4,6-trinitrobenzene sulfonic acid induced colitis in rats. Exp Toxicol Pathol 2003; 55(4): 271-276.
  • Armstrong AM, Campbell GR, Gannon C, Kirk SJ, Gardiner KR. Oral administration of inducible nitric oxide synthase inhibitors reduces nitric oxide synthesis but has no effect on the severity of experimental colitis. Scand J Gastroenterol 2000; 35(8): 832-838.
  • Dikopoulos N, Nussler AK, Liptay S, et al. Inhibition of nitric oxide synthesis by aminoguanidine increases intestinal damage in the acute phase of rat TNBS-colitis. Eur J Clin Invest 2001; 31(3): 234-239.
  • Yoshida Y, Iwai A, Itoh K, et al. Role of inducible nitric oxide synthase in dextran sulfate sodium-induced colitis. Aliment Pharmacol Ther 2000; 14(Suppl 1): 26-32.
  • Pertwee RG. GPR55: a new member of the cannabinoid receptor clan? Br J Pharmacol 2007; 152: 984-946.
  • Brown AJ. Novel cannabinoid receptors. Br J Pharmacol 2007; 152: 567-575.
  • De Petrocellis L, Vellani V, Schiano-Moriello A, et al. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 2008; 325(3): 1007-1015.
  • Fogel WA, Stasiak A, Lewinski A, Maksymowicz M, Jochem J. Satiety signalling histaminergic system and brain-gut peptides in regulation of food intake in rats with portocaval anastomosis. J Physiol Pharmacol 2008; 59(Suppl 2): 135-144.
  • Di Marzo V, Matias I. Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8(5): 585-589.
  • Konturek PC, Brzozowski T, Engel M, et al. Ghrelin ameliorates colonic inflammation. Role of nitric oxide and sensory nerves. J Physiol Pharmacol 2009; 60(2): 41-47.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-21e50978-62f5-4749-a8cb-1decb1e81da0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.