PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 3 |

Tytuł artykułu

Mechanisms of hydrogen peroxide-induced vasoconstriction in the isolated perfused rat kidney

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The vasoconstrictor effect of hydrogen peroxide (H2O2) on isolated perfused rat kidney was investigated. H2O2 induced vasoconstriction in the isolated rat kidney in a concentration-dependent manner. The vasoconstrictor effects of H2O2 were completely inhibited by 1200 U/ml catalase. Endothelium-removal potentiated the renal response to H2O2. The H2O2 dose-response curve was not significantly modified by administration of the NO inhibitor L-NAME (10-4 mol/l), whereas it was increased by the non-specific inhibitor of K+-channels, tetraethylammonium (3·10-3 mol/l). Separately, removal of extracellular Ca2+, administration of a mixture of calcium desensitizing agents (nitroprusside, papaverine, and diazoxide), and administration of a protein kinase C (PKC) inhibitor (chelerythrine, 10-5 mol/l) each significantly attenuated the vasoconstrictor response to H2O2, which was virtually suppressed when they were performed together. The pressor response to H2O2 was not affected by: dimethyl sulfoxide (7·10-3 mol/l) plus mannitol (3·10-3 mol/l); intracellular Ca2+ chelation using BAPTA (10-5 mol/l); calcium store depletion after repeated doses of phenylephrine (10-5 g/g kidney); or the presence of indomethacin (10-5 mol/l), ODYA (2·10-6 mol/l) or genistein (10-5 mol/l). We conclude that the vasoconstrictor response to H2O2 in the rat renal vasculature comprises the following components: 1) extracellular calcium influx, 2) activation of PKC, and 3) stimulation of pathways leading to sensitization of contractile elements to calcium. Moreover, a reduced pressor responsiveness to H2O2 in female kidneys was observed.

Wydawca

-

Rocznik

Tom

61

Numer

3

Opis fizyczny

p.325-332,fig.,ref.

Twórcy

autor
  • Departamento de Fisiologia, Facultad de Medicina, E-18012, Granada, Spain
autor
autor
autor

Bibliografia

  • Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett 2000; 486: 10-13.
  • Ardanaz N, Pagano PJ. Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med 2006; 231: 237-251.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2001; 82: 47-95.
  • Faraci FM. Hydrogen peroxide: watery fuel for change in vascular biology. Arteriocler Thromb Vasc Biol 2006; 26: 1931-1933.
  • Wolin MS, Gupte SA, Oeckler RA. Superoxide in the vascular system. J Vasc Res 2002; 39: 191-207.
  • Gil-Longo J, Gonzalez-Vazquez C. Characterization of four different effects elicited by H2O2 in rat aorta. Vascul Pharmacol 2005; 43: 128-138.
  • Thakali K, Davenport L, Fink GD, Watts SW. Pleiotropic effects of hydrogen peroxide in arteries and veins from normotensive and hypertensive rats. Hypertension 2006; 47: 482–487.
  • Rodriguez-Martinez MA, Garcia-Cohen EC, Baena AB, Gonzalez R, Salaices M, Marin J. Contractile responses elicited by hydrogen peroxide in aorta from normotensive and hypertensive rats. Endothelial modulation and mechanism involved. Br J Pharmacol 1998; 125: 1329-1335.
  • Yang ZW, Zheng T, Zhang A, Altura BT, Altura BM. Mechanisms of hydrogen peroxide-induced contraction of rat aorta. Eur J Pharmacol 1998; 344: 169-181.
  • Thakali K, Davenport L, Fink GD, Watts SW. Cyclooxygenase, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase MAPK, Rho kinase, and Src mediate hydrogen peroxide-induced contraction of rat thoracic aorta and vena cava. J Pharmacol Exp Ther 2007; 320: 236-243.
  • Jin N, Rhoades RA. Activation of tyrosine kinases in H2O2-induced contraction in pulmonary artery. Am J Physiol 1997; 272: H2686-H2692.
  • Katusic ZS, Schugel J, Cosentino F, Vanhoutte PM. Endothelium-dependent contractions to oxygen-derived free radicals in the canine basilar artery. Am J Physiol 1993; 264: H859-H864.
  • Omar HA, Figueroa R, Omar RA, Tejani N, Wolin MS. Hydrogen peroxide and reoxygenation cause prostaglandin-mediated contraction of human placental arteries and veins. Am J Obstet Gynecol 1992; 167: 201-207.
  • Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev 1996; 76: 967-1003.
  • Yang ZW, Zheng T, Wang J, Zhang A, Altura BT, Altura BM. Hydrogen peroxide induces contraction and raises [Ca2+]i in canine cerebral arterial smooth muscle: participation of cellular signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 1999; 360: 646-653.
  • Robert M, Morris HG, Schreoder WR, Repine JE. Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs. J Clin Invest 1984; 74: 608-613.
  • Rao GN, Runge MS, Alexander RW. Hydrogen peroxide activation of cytosolic phospholipase A2 in vascular smooth muscle cells. Biochim Biophys Acta 1995; 1265: 67-72.
  • Sheehan DW, Giese EC, Gugino SF, Russel JA. Characterization and mechanisms of H2O2-induced contractions of pulmonary arteries. Am J Physiol 1993; 264: H1542-H1547.
  • Boyer CS, Bannenberg GL, Neve EPA, Ryrfeldt A, Moldeus P. Evidence for the activation of the signal-responsive phospholipase A2 by exogenous hydrogen peroxide. Biochem Pharmacol 1995; 50: 753-761.
  • Swei A, Lacy F, DeLano FA, Schmid-Schonbein GW. Oxidative stress in the Dahl hypertensive rat. Hypertension 1997; 30: 1628-1633.
  • Wolin MS. Activated oxygen metabolites as regulators of vascular tone. Klin Wochenschr 1991; 69: 1046-1049.
  • Yang H, Shi M, VanRemmen H, et al. Reduction of pressor response to vasoconstrictor agents by overexpression of catalase in mice. Am J Hypertens 2003; 16: 1-5.
  • Suvorava T, Lauer N, Kumpf S, Jacob R, Meyer W, Kojda G. Endogenous vascular hydrogen peroxide regulates arteriolar tension in vivo. Circulation 2005; 112: 2487-2495.
  • Cowley AW. Long-term control of arterial pressure. Physiol Rev 1992; 72: 211-300.
  • Chen YF, Cowley AW, Zou AP. Increased H2O2 counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla. Am J Physiol Regul Integr Comp Physiol 2003; 285: R827-R833.
  • Makino A, Skelton MM, Zou AP, Cowley AW. Increased renal medullary H2O2 leads to hypertension. Hypertension 2003; 42: 25-30.
  • Wangensteen R, Moreno JM, Sainz J, et al. Gender difference in the role of endothelial-derived relaxing factors modulating renal vascular reactivity. Eur J Pharmacol 2004; 486: 281-288.
  • Vargas F. Osuna A. Modulatory role of endothelium-derived relaxing factors on the response to vasoconstrictors and on flow-pressure curve in the isolated perfused rat kidney. J Vasc Res 1996; 33: 119-123.
  • Snedecor GW, Cochran WG. Statistical methods. Iowa: The Iowa State University Press 1980, 507.
  • Thakali K, Demel SL, Fink GD, Watts SW. Endothelin-1-induced contraction in veins is independent of hydrogen peroxide. Am J Physiol Heart Circ Physiol 2005; 289: H1115-H11122.
  • Suematsu M, Schmid-Schonbein GW, Chavez-Chavez RH, et al. in vivo visualization of oxidative changes in microvessels during neutrophil activation. Am J Physiol 1993; 264: H881-H891.
  • Lacy F, Kailasam MT, O’Connor DT, Schmid-Schonbein GW, Parmer RJ. Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 2000; 36: 878-884.
  • Lacy F, O’Connor DT, Schmid-Schonbein GW. Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J Hypertens 1998; 16: 291-303.
  • Brandes RP, Mugge A. Gender differences in the generation of superoxide anions in the rat aorta. Life Sci 1997; 60: 391-396.
  • Sullivan JC, Sasser JM, Pollock JS. Male SHR had enhanced urinary excretion of H2O2 compared with female SHR. Am J Physiol 2007; 92: R764-R768.
  • Pelaez NJ, Braun TR, Paul RJ, Meiss RA, Packer S. H2O2 mediates Ca2+- and MLC20 phosphorylation-independent contraction in intact and permeabilized vascular muscle. Am J Physiol 2000; 279: H1185-H1193.
  • Baas AS, Berk BC. Differential activation of mitogen-activated protein kinases by H2O2 and O2·- in vascular smooth muscle cells. Circ Res 1995; 77: 29-36.
  • Salamanca DA, Khalil RA. Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension. Biochem Pharmacol 2005; 70: 1537-1547.
  • Lopez-Ongil S, Torrecillas G, Perez-Sala D, Gonzalez-Santiago L, Rodriguez-Puyol M, Rodriguez-Puyol D. Mechanisms involved in the contraction of endothelial cells by hydrogen peroxide. Free Radic Biol Med 1999; 26: 501-510.
  • Kompanowska-Jezierska E, Kuczeriszka M. Cytochrome P-450 metabolites in renal circulation and excretion-interaction with the nitric oxide (NO) system. J Physiol Pharmacol 2008; 59: 137-149.
  • Sadowski J, Badzynska B. Intrarenal vasodilator systems: NO, prostaglandins and bradykinin. An integrative approach. J Physiol Pharmacol 2008; 59: 105-119.
  • Thomas SR, Schulz E, Keaney JF. Hydrogen peroxide restrains endothelium- derived nitric oxide bioactivity - role for iron-dependent oxidative stress. Free Radic Biol Med 2006; 41: 681-688.
  • Li WG, Miller FJ, Zhang HJ, Spitz DR, Oberley LW, Weintraub NL. H2O2-induced O2– production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 2001; 276: 29251-29256.
  • Chalupsky K, Cai H. Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 2005; 102: 9056-9061.
  • Thengchaisri N, Hein TW, Wang W, et al. Upregulation of arginase by H2O2 impairs endothelium-dependent nitric oxide-mediated dilation of coronary arterioles. Arterioscler Thromb Vasc Biol 2006; 26: 2035-2042.
  • Jaimes EA, Sweeney C, Raij L. Effects of the reactive oxygen species hydrogen peroxide and hypochlorite on endothelial nitric oxide production. Hypertension 2001; 38: 877-883.
  • Li L, Wu J, Jiang C. Differential expression of Kir6.1 and SUR2B mRNAs in the vasculature of various tissues in rats. J Membr Biol 2003; 196: 61-69.
  • Leffler CW, Busija DW, Armstead WM, Mirro R. H2O2 effects on cerebral prostanoids and pial arteriolar diameter in piglets. Am J Physiol 1990; 258: H1382-H1387.
  • Gao Y, Vanhoutte PM. Products of cyclooxygenase mediate the responses of guinea pig trachea to hydrogen peroxide. J Appl Physiol 1993; 74: 2105-2111.
  • Shen JZ, Zheng XF, Kwan CY. Differential contractile actions of reactive oxygen species on rat aorta: selective activation of ATP receptor by H2O2. Life Sci 2000; 66: 291-296.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-21e208b1-0d3d-4cfe-ba7f-1f110ae2b7fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.