PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 2 |

Tytuł artykułu

Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Microsatellites (SSR - simple sequence repeats, STR - short tandem repeats, SSLP - simple sequence length polymorphism, VNTR - variable number of tandem repeats) are the class of repetitive DNA sequences present in all living organisms. Particular characterstics of microsatellites, such as their presence in the genomes of all living organisms, high level of allelic variation, co-dominant mode of inheritance and potential for automated analysis make them an excellent tool for a number of approaches like genotyping, mapping and positional clonig of genes. The three most popular types of markers containing microsatellite sequences that are presently used are: (1) SSR (simple sequence repeats), generated by amplifying in a PCR reaction with the use of primers complementary to flanking regions; (2) ISSR (inter-simple sequence repeats), based on the amplification of regions between inversely oriented closely spaced microsatellites; and (3) SAMPL (selective amplification of microsatellite polymorphic loci), which utilises AFLP (amplified fragment-length polymorphism) methodology, with one exception - for the second amplification, one of the starters is complementary to the microsatellite sequence. The usefulness of the three above-mentioned markers for numerous purposes has been well documented for plants.

Wydawca

-

Rocznik

Tom

09

Numer

2

Opis fizyczny

p.221-238,ref.

Twórcy

  • Warsaw Agricultural University, Nowoursynowska 166, 02-787 Warsaw, Poland
autor

Bibliografia

  • 1. Morgante, M., Hanafer, M. and Powell, W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 30 (2002) 194-200.
  • 2. Gur-Arie, R., Cohen, C.J., Eitan, Y., Shelef, L., Hallerman, E.M. and Kashi, Y. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res. 10 (2000) 62-71.
  • 3. Chambers, G.K. and MacAvoy, E.S. Microsatellites: consensus and controversy. Comp. Biochem. Physiol. 126 (2000) 455-476.
  • 4. Hongtrakul, V., Slabauch, MB. and Knapp, J. DFLP, SSCP, and SSR markers for 9-stearoyl-acyl carrier protein desaturases strongly expressed in developing seeds of sunflower: intron lengths are polymorphic among elite inbred lines. Mol. Breed. 4 (1998) 195-203.
  • 5. Panaud, O., Chen, X. and McCouch, S.R. Frequency of microsatellite sequences in rice (Oryza sativa L.). Genome 38 (1995) 1170-1176.
  • 6. Metzgar, D., Bytof, J. and Wills, C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 10 (2000) 7280.
  • 7. Schlörter, C. Evolutionary dynamics of microsatellite DNA. Chromosoma 109 (2000) 365-371.
  • 8. Tautz, D., Trick, M. and Dover, G.A. Cryptic simplicity in DNA is a major source of genetic variation. Nature 322 (1986) 652-656.
  • 9. Morgante, M. and Olivieri, A.M. PCR-amplified microsatellites as markers in plant genetics. Plant J. 3 (1993) 175-182.
  • 10. Röder, M.S., Plaschke, J., König, U., Börner, A., Sorrells, M., Tanksley, S.D. and Ganal, M.W. Abundance, variability and chromosomal location of microsatellites in wheat. Mol. Gen. Genet. 246 (1995) 327-333.
  • 11. Morgante, M. and Vogel, J. Compound microsatellite primers for the detection of genetic polymorphism. U.S. Patent Appl. 08/326456 (1994).
  • 12. Rafalski, J.A. and Tingey, S.V. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends. Genet. 9 (1993) 275-280.
  • 13. Zane, L., Bargelloni, L. and Patarnello, T. Strategies for microsatellite isolation: a review. Mol. Ecol. 11 (2002) 1-16.
  • 14. Cho, Y.G., Temnykh, S., Chen, X., Lipovich, L., McCouch, S.R., Ayres, N. and Cartinhour, S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.) Theor. Appl. Genet. 100 (2000) 713-722.
  • 15. Hackauf, B. and Wehling, P. Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed. 121 (2002) 17-25.
  • 16. Saal, B. and Wricke, G. Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42 (1999) 964-972.
  • 17. Ashkenazi, V., Chani, E., Lavi, U., Levy, D., Hillel, J. and Veilleux, R.E. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome 44 (2001) 50-62.
  • 18. Brown, S.M., Hopkins, M.S., Mitchell, S.E., Senior, M.L., Wang, T.Y., Duncan, R.R., Gonzalez-Candelas, F. and Kresovich, S. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench] Theor. Appl. Genet. 93 (1996) 190-198.
  • 19. Panaud, O., Chen, X. and McCouch, S.R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.) Mol. Gen. Genet. 252 (1996) 597-607.
  • 20. Taramino, G. and Tingey, S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39 (1996) 277-287.
  • 21.Rafalski, J.A., Vogel, J.M., Morgante, M., Powell, M., Andre, C. and Tingey, S.V. Generating and using DNA markers in plants. In: Non-mammalian genomic analysis. A practical guide (Birren, B. and Lai, E. Eds.) Acad. Press, New York, (1996) pp. 75-134.
  • 22. Fischer D. and Bachmann K. Microsatellite enrichment in organisms with large genomes (Allium cepa L.). BioTechniques 24 (1998) 796-802.
  • 23. Hamilton, M.B., Pincus, E.L., DiFiore, A. and Fleischer, R.C. Universal linker and ligation procedures for construction of genomic DNA library enriched for microsatellites. BioTechniques 27 (1999) 500-507.
  • 24. Milbourne, D., Meyer, R.C., Collins, A.J., Ramsay, L.D., Gebhardt, C. and Waugh, R. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol. Gen. Genet. 259 (1998) 233-245.
  • 25. Prochazka, M. Microsatellite hybrid capture technique for simultaneous isolation of various STR markers. Genome Res. 6 (1996) 646-649.
  • 26. Edwards, K.J., Barker, J.H.A., Daly, A., Jones, C. and Karp, A. Microsatellite libraries enriched for several microsatellite sequence in plants. BioTechniques 20 (1996) 759-760.
  • 27. Lench, N.J., Norris, A., Bailey, A., Booth, A. and Markham, A.F. 1996. Vectorette PCR isolation of microsatellite repeat sequences using anchored dinucleotide repeat primers. Nucleic Acids Res. 24 (1996) 2190-2191.
  • 28. Cifarelli, R.A., Gallitelli, M. and Cellini, F. Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. Nucleic Acid Res. 23 (1995) 3802-3803.
  • 29. Lunt, D.H., Hutchinson, W.F. and Carvalho, G.R. An efficient method for PCR-based identification of microsatellite arrays (PIMA). Mol. Ecol. 8 (1999) 893-894.
  • 30. Becker, J. and Heun, M. Barley microsatellites: Allele variation and mapping. Plant Mol. Biol. 27 (1995) 835-845.
  • 31. De la Rosa, R., Angiolillo, A., Guerrero, C., Pellegrini, M., Rallo, L., Besnard, G. and Berville, A., Martin, A. and Baldoni, L. A first linkage map of olive (Olea europea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor. Appl. Genet. 106 (2003) 1273-1282.
  • 32. Hackenberger, M., Bohn, M., Ziegle, J.S., Joe, L.K., Hauser, J.D., Hutton, M. and Melchinger, A.E. Variation of DNA fingerprints among accessions within maize inbres lines and implications for identification of essentially derived varietes. I. Genetic and technical sources of variation in SSR data. Mol. Breed. 10 (2002) 181-191.
  • 33. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P. and Ganal, M.W. A microsatellite map of wheat. Genetics 149 (1998) 2007-2023.
  • 34. Tang, S., Yu, J.K., Slabaugh, M.B., Shintani, D.K. and Knapp, S.J. Simple sequence repeat map of the sunflower genome. Theor. Appl. Genet. 105 (2002)1124-1136.
  • 35. Mahalakshmi, V., Aparna, P., Ramadevi, S. and Oritz, R. Genomic sequence derived simple sequence repeats markers. A case study with Medicago sativa spp. Electron. J. Biotechnol. 5 (2002) 234-242.
  • 36. Senior, M.L. and Heun, M. Mapping maize microsatellites and polymerase chain reaction confirmation of the target repeats using a CT primer. Genome 36 (1993) 884-889.
  • 37. Temnykh, S., Park, W.D., Ayers, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y.G., Ishii, T. and McCouch S.R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.) Theor. Appl. Genet. 100 (2000) 697-712.
  • 38. Masojć, P. The application of molecular markers in the process of selection. Cell. Mol. Biol. Lett. 7 (2002) 499-509.
  • 39. Dußle, C.M., M. Quint, M., Melchinger, A.E., Xu, M.L. and Lübberstedt T. Saturation of two chromosome regions conferring resistance to SCMV with SSR and AFLP markers by targeted BSA. Theor. Appl. Genet. 106 (2003) 485-493.
  • 40. Mammadov, J.A., Zwonitzer, J.C., Biyashev, R.M., Griffey, C.A., Jin, Y., Steffenson, B.J. and Saghai Maroof M.A. Molecular mapping of leaf rust resistance gene Rph5 in barley. Crop Sci. 43 (2003) 388-393.
  • 41. Zhou, W-C., Kolb, FL., Bai, G-H., Domier, L.L., Boze, L.K. and Smith, N.J. Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed. 122 (2003) 40-46.
  • 42. Liu, X.C. and Wu, J.L. SSR heterotic patterns of parents for making and predicting heterosis. Mol. Breed. 4 (1998) 263-268.
  • 43. Prasad, M., Varshney, R.K., Roy, J.K., Balyan, H.S. and Gupta, P.K. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor. Appl. Genet. 100 (2000) 584-592.
  • 44. Monforte, A.J., Garcia-Mas, J. and Arius, P. Genetic variability in melon based on microsatellite variation. Plant Breed. 122 (2003) 153- 157.
  • 45. Provan, J., Russel, J.R., Booth, A. and Powell W. Polymorphic chloroplast simple sequence repeat primers for systematic and population studies in the genus Hordeum. Mol. Ecol. 8 (1999) 505- 511.
  • 46. Yaish, M.W.F. and Pérez de la Vega, M. Isolation of (GA)n microsatellite sequences and description of a predicted MADS-box sequence isolated from common bean (Phaseolus vulgaris L.). Genet. Mol. Biol. (2003) 26 337342.
  • 47. Russel, J.R., Fuller, J.D., Macaulay, M., Hatz, B.G., Jahoor, A., Powell, W. and Waugh R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 95 (1997) 714-722.
  • 48. Bornet, B., Goraguer, F., Joly, G. and Branchard, M. Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45 (2002a) 481-484.
  • 49. Bornet, B., Muller, C., Paulus, F. and Branchard, M. Highly informative nature of inter simple sequence repeat (ISSR) sequences amplified using tri-and tetra-nucleotide primers from DNA of cauliflower (Brassica oleracea var. botrytis L.). Genome 45 (2002b) 890-896.
  • 50. Zietkiewicz, E., Rafalski, A. and Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20 (1994) 176-183.
  • 51. Nagaraju, J., Kathirvel, M., Ramesh Kumar, R., Siddiq, E.A. and Hasnain, S.E. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 5836-5841.
  • 52. Blair, M.W., Panaud, O. and McCouch, S.R. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl. Genet. 98 (1999) 780792.
  • 53. Cavan, G., Potier, V. and Moss, S.R. Genetic diversity of weeds growing in continuous wheat. Weed Res. 40 (2000) 301-310.
  • 54. Fang, D. Q. and Roose, M. L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95 (1997) 408-417.
  • 55. Gupta, M., Chyi, Y.S., Romero-Severson, J. and Owen, J.L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple sequence repeats. Theor. Appl. Genet. 89 (1994) 998-1006.
  • 56. Jain, A., Apparanda, C. and Bhalla, P.L. Evaluation of genetic diversity and genome fingerprinting of Pandorea (Bignoniaceae) by RAPD and inter-SSR PCR. Genome 42 (1999) 714-719.
  • 57. Korbin, M., Kuras, A. and Żurawicz, E. Fruit plant germplasm characterisation using molecular markers generated in RAPD and ISSR-PCR. Cell. Mol. Biol. Lett. (2002) 785-794.
  • 58. Raina, S.N., Rani, V., Kojima, T., Ogihara, Y., Singh, K.P. and Devarumath, R.M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44 (2001) 763-772.
  • 59. Wolfe, A.D., Xiang, Q.-Y and Kephart, S.R. Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat markers. Mol. Ecol. 71(1998) 1107-1125.
  • 60. Ammiraju, J.S.S., Dholakia, B.B., Santra, D.K., Singh, H., Lagu, M.D., Tamhankar, S.A., Dhaliwal, H.S., Rao, V.S., Gupta, V.S. and Ranjekar, P.K. Identification of inter simple sequece repeat (ISSR) markers associated with seed size in wheat. Theor. Appl. Genet. 102 (2001) 726-732.
  • 61. Agaki, H., Yokozeki, Y., Inagaki, A., Nakamura, A. and Fujimura, T. A co-dominant DNA marker closely linker to rice nuclear restorer gene, Rf-1, identified with inter-SSR fingerprinting. Genome 39 (1996) 1205-1209.
  • 62. Ratnaparkhe, M.B., Santra, D.K., Tullu, A. and Muehlbeur, F.J. Inheritance of inter-simple sequence repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor. Appl. Genet. 96 (1998) 348-353.
  • 63. Marczewski, W., Hennig, J. and Gebhardt, C. The Potato virus S resistance gene Ns maps to potato chromosome VIII. Theor. Appl. Genet. 105 (2002) 564-567.
  • 64. Levin, I., Gilboa, N., Yeselson, E, Shen, S. and Schaffer, A. A. Fgr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits. Theor. Appl. Genet. 100 (2000) 256-262.
  • 65. Albani, M. C. and Wilkinson, M. J. Inter simple sequence repeat polymerase chain reaction for the detection of somaclonal variation. Plant Breed. 117 (1998) 573-575.
  • 66. Leroy, X.J. and Leon, K. A rapid method for detection of plant genomic instability using unanchored-microsatellite primers. Plant Mol. Biol. Rep. 18 (2000) 283a-283g.
  • 67. Rostiana, O., Niwa, M. and Marubashi, W. Efficiency of inter-simple sequence repeat PCR for detecting somaclonal variation among leaf-culture-regenerated plants of horseradish. Breed. Sci. 49 (1999) 245-250.
  • 68. Van der Nest, M.A., Steenkamp, E.T., Wigfield, B.D. and Wingfield, M.J. Development of simple sequence repeat (SSR) markers in Eucalyptus from amplified inter-simple sequence repeats (ISSR). Plant Breed. 119 (2000) 433-436.
  • 69. Nagaoka, T. and Ogihara, Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94 (1997) 597-602.
  • 70. Galvan, M.Z., Bornet, B., Balatti, P.A. and Branchard, M. Inter simple sequence repeat (ISSR) markers as a tool for the assessment of both genetic diversity and gene pool origin in common bean (Phaseolus vulgaris L.). Euphytica 132 (2003) 297-301.
  • 71. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res. 23 (1995) 4407-4414.
  • 72. Hayden, M.J. and Sharp, P.J. Targeted development of informative microsatellite (SSR) markers. Nucleic Acids Res. 29 (2001) e44.
  • 73. Vivek, B.S. and Simon, P.W. Linkage relationships among molecular makers and storage root traits of carrot (Daucus carota L. ssp. sativus) Theor. Appl. Genet. 99 (1999) 58-64.
  • 74. Bolibok, H. and Rakoczy-Trojanowska, M. Evaluating the efficiency of SAMPL marker system in assessing genetic diversity in winter rye (Secale cereale L ). 7th Internat. Congress of Plant Mol. Biol. Barcelona, June 2328, 2003.
  • 75. Roy, J.K., Balyan, H.S., Prasad. M. and Gupta, P.K. Use of SAMPL for a study of DNA polymorphism, genetic diversity and possible gene tagging in bread wheat. Theor. Appl. Genet. 104 (2002) 465-472.
  • 76. Witsenboer, H., Vogel, J. and Michelmore R.W. Identification, genetic localization and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40 (1997) 923-936.
  • 77. Paglia, G. and Morgante, M. PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol. Breed. 4 (1998) 173177.
  • 78. De Simone, M., Morgante, M., Lucchin, M., Parrini, P. and Marocco, A. A first linkage map of Cichorium intybus L. using a one-way pseudo-testcross and PCR-derived markers. Mol. Breed. 3 (1997) 415-425.
  • 79. Singh, A., Chaudhury, A., Srivastava, P.S. and Lakshmikumaran M. Comparison of AFLP and SAMPL markers for assessment of intrapopulation genetic variation in Azadirachta indica A. Juss. Plant Sci. 162 (2002) 17-25.
  • 80. Tseng, Y.T., Lo, H.F. and Hwang, S.Y. Genotyping and assessment of genetic relationships in elite polycross breeding cultivars of sweet potato in Taiwan based on SAMPL polymorphisms. Bot. Bull. Acad. Sin. 43. (2002) 99-105.
  • 81. Tosti, N. and Negri, V. Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata subsp. unguiculata) landraces. Genome 45 (2002) 268-275.
  • 82. Porceddu, A., Albertini, E., Barcaccia, G., Falistocco, E. and Falcinelli, M. Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theor. Appl. Genet. 104 (2001) 273-280.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-218d7671-6027-4c37-b56a-318895e221a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.