PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 16 | 6 |

Tytuł artykułu

Supplementation of wastewater process modelling tools to enable the kinetic analysis of sewage sludge composting

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study demonstrates mathematical description of sewage sludge composting based on identifica­tion and separate characterisation of simple process parts. For a description of the microbial processes an ASM3-based mathematical model developed for autothermal thermophilic aerobic sludge digestion is used. The oxygen mass transfer was characterized in a separate way. The 2.964T0-3 m2-d-1 value of the oxygen diffusion coefficient in the sludge at 55°C indicates the strong oxygen limitation of the microbial degrada­tion. The model extended with the oxygen mass transfer description has been validated using results from composting experiments performed with different specific sludge-air surface areas and with the renewal of the sludge surface.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

6

Opis fizyczny

p.831-839,fig.,ref

Twórcy

autor
  • Budapest University of Technology and Economics, Muegyetem rkp.3.Budapest, H-1111, Hungary
autor
autor

Bibliografia

  • 1. COUNCIL OF THE EUROPEAN COMMUNITY. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. OJ. L. 182, 1, 1999.
  • 2. MASON I. G. Mathematical Modelling of the Compost­ing Process: A Review. Waste Manage. 26, 3, 2006.
  • 3. CHANG J. I., TSAI J. J., WU K. H. Mathematical Model for Carbon Dioxide Evolution from the Thermophilic Com­posting of Synthetic Food Wastes Made of Dog Food. Waste Manage. 25, 1037, 2005.
  • 4. SOLE-MAURI F., ILLA J., MAGRi A., PRENAFETA- BOLDU F. X., FLOTATS X. An Integrated Biochemical and Physical Model for the Composting Process. Biores. Tech- nol. [in press], 2006.
  • 5. HENZE M., GRADY C. P. L., GUJER W., MARAIS G. v. R., MATSUO T. Activated Sludge Model No. 1. Technical Report, IAWPRC Scientific and Technical Reports, London, UK, 1987.
  • 6. NAKASAKI K., NAKATO Y., AKIYAMA T., SHODA M., KUBOTA H. Oxygen Diffusion and Microbial Activity in the Composting of Dehydrated Sewage Sludge Cakes. J. Ferment. Technol. 65, (1), 43, 1987.
  • 7. LASARIDI, K. E., STENTIFORD, E. I. A Simple Respirometric Technique for Assessing Compost Stability. Water Res. 32(12), 3717, 1998.
  • 8. KELLY H. G., DONALD S. M., KOCH F. A., WET­TER R. D., MELCHER H. Liquid Composting of Mu­nicipal Sludge for Agricultural Use in Small Commu­nities: Canadian Application. IAWPRC Proceedings, Sludge Management Conference, Los Angeles, CA, Jan. 1990.
  • 9. NAKASAKI K., SASAKI M., SHODA M., KUBOTA H. Change in Microbial Numbers During Thermophilic Com­posting of Sewage Sludge with Reference to CO2 Evolution Rate. Appl. Environ. Microbiol. 49, (1), 37, 1985.
  • 10. STROM P. F. Identification of Thermophilic Bacteria in Solid Waste Composting. Appl. Environ. Microbiol. 50, (4), 906, 1985.
  • 11. GHAZIFARD A., KASRA-KERMANSHAHI R., FAR E. Z. Identification of Thermophilic and Mesophilic Bacteria and Fungi in Esfahan (Iran) Municipal Solid Waste Compost. Waste Manage. Res. 19, 257, 2001.
  • 12. KURISU F., SATOH H., MINO T., MATSUO T. Microbial Community Analysis of Thermophilic Contact Oxidation Process by Using Ribosomal RNA Approaches and the Qui- none Profile Method. Water Res. 36, 429, 2002.
  • 13. RICHARD T. L., VEEKEN A. H. M., WILDE V., HAMEL- ERS H. V. M. Air-Filled Porosity and Permeability Relation­ships during Solid-State Fermentation. Biotechnol. Prog. 20, 1372, 2004.
  • 14. RICHARD T. L., HAMELERS H. V. L., VEEKEN A., SIL­VA T. Moisture Relationships in Composting Process. Com­post Sci. Util. 10, 286, 2002.
  • 15. KOVACS R., CSIKOR ZS., MIHALTZ P. Application of Activated Sludge Model No. 3 for the Modelling of Organic Matter Biodegradation at Thermophilic Temperatures. Wa­ter Environ. Res. [in press], 2007.
  • 16. GUJER W., HENZE, M., MINO T., LOOSDRECHT M. Ac­tivated Sludge Model No. 3. Water Sci. Technol. 39, (1), 183, 1999.
  • 17. NAGYGYORY SZ., WITTMAN M., PINTER S., VISEG- RÁDY A., DANCSÓ A., THUY N. B., NOSZTICZIUS Z., HEGEDÜS L., FORSTERLING H. D. Alternative Reaction Channels and Carbene Intermediates in the Ce4+-Malonic Acid and Ce4+-Bromomalonic Acid Reactions. 1. CO2 Mea­surements. J. Phys. Chem. A. 103, (25), 4885, 1999.
  • 18. KOVÁCS R., MIHÁLTZ P., CSIKOR ZS. Connection Be­tween Oxygen Uptake Rate and Carbon Dioxide Evolution Rate in Aerobic Thermophilic Sludge Digestion. Periodica Polytech., Chem. Eng. [in press], 2007.
  • 19. EATON J. W. GNU Octave Manual. Network Theory Lim­ited, Bristol, UK, 2002.
  • 20. LANDOLT H., BORNSTEIN R. Numerical Data and Func­tional Relationships in Science and Technology. Springer Verlag, Berlin, 1993.
  • 21. PHILLIPS V. R., SCOTFORD I. M., WHITE R. P., HARTS­HORN R. L. Minimum-Cost Biofilters for Reducing Odours and Other Aerial Emissions From Livestock Buildings: Part 1, Basic Airflow Aspects. J. Agric. Engng. Res. 62, 203, 1995.
  • 22. GEA T., BARRENA R., ARTOLA A., SÁNCHEZ A. Op­timal Bulking Agent Particle Size and Usage for Heat Re­tention and Disinfection in Domestic Wastewater Sludge Composting. Waste Manage. [in press], doi:10.1016/ j.wasman.2006.07.005, 2006.
  • 23. AULENTA F., BASSANI C., LIGTHART J., MAJONE M., TILCHE A. Calorimetry: A Tool for Assessing Microbial Activity Under Aerobic and Anoxic Conditions. Water Res. 36, 1297, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-20a9c343-5c6b-4f08-bd1a-e946b8133986
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.