PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 48 | 4 |

Tytuł artykułu

Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The contemporary “two−step model” of growth of the scleractinian skeleton is based mostly on transversely sectioned samples. According to this model, many skeletal elements e.g., septa are formed in two temporally distinct phases represented by (1) “centers of calcification” that are composed of homogenously distributed microcrystalline or/and organic components and serve as scaffolding for the further growth of (2) fibrous skeleton. Based on transverse and longitudinal sections and histochemical staining techniques, I demonstrate herein that in extant corals (i.e., Stephanocyathus, Flabellum, Desmophyllum, “Ceratotrochus”, Galaxea, Platygyra), the entire septal skeleton is composed of superimposed layers of mineral and organic−enriched phases. These may be interrupted in some directions of growth but in other directions there is continuity between “centers of calcification” and “fibers”, making any distinction between these two structures unclear. As an alternative to the “two−step model”, a “layered model” of skeletal growth is proposed, that explains the differences between “centers of calcification” and “fibers” in terms of differential growth dynamics between these regions. Instead of the traditional but inadequate “trabecular” and “centers of calcification” concepts, a distinction between deposits of the Rapid Accretion Front (dRAF; which in particular cases can be organized into Centers of Rapid Accretion (CRA), and Thickening Deposits (TD) is proposed. In the dRAF region, mineral components, ca. 50 nm in diameter, seem to match the size range of nodular structures recently interpreted as nascent CaCO₃ crystals. Remarkable regularity of the mineral/organic phase alternations (microbanding) in the TD skeleton of zooxanthellate corals and lack of such regular microbanding in azooxanthellate coralla is a promising criterion for distinguishing these two ecological coral groups on a skeletal basis, and one that could be applicable to fossils.

Wydawca

-

Rocznik

Tom

48

Numer

4

Opis fizyczny

p.497-530,fig.

Twórcy

autor
  • Polish Academy of Sciences, Twarda 51-55, 00-818 Warsaw, Poland

Bibliografia

  • Alcock, A. 1902. Diagnoses and descriptions of new species of corals from the Siboga expedition. Tijdschrift der Nederlandsche Dierkundige Vereeniging 7: 89–115.
  • Al−Horani, F.A., Al−Moghrabi, S.M., and De Beer, D. 2003. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Marine Biology 142: 419–426.
  • Allemand, D., Tambutté, É., Girard, J.−P., and Jaubert, J. 1998. Organic matrix synthesis in the Scleractinian coral, Stylophora pistillata: role in biomineralization and potential target of the organotin TBT. Journal of Experimental Biology 201: 2001–2009.
  • Allison, N., Finch, A., Sutton, S., and Newville, M. 2001. Strontium heterogeneity and speciation in coral aragonite; implications for the strontium paleothermometer. Geochimica et Cosmochimica Acta 65: 2669–2676.
  • Alloiteau, J. 1957. Contribution a la systématique des Madréporaires fossiles. Centre Nationale de la Recherche Scientifique 1: 1–426.
  • Barnes, D.J. 1970. Coral skeleton: an explanation of their growth and structure. Science 170: 1305–1308.
  • Barnes, D.J. 1972. The structure and formation of growth−ridges in scleractinian coral skeletons. Proceedings of the Royal Society of London B 182: 331–350.
  • Barnes, D.J. and Chalker, B.E. 1990. Calcification and photosynthesis in reef−building corals and algae. In: Z. Dubinsky (ed.), Coral Reefs (Ecosystems of the world 25), 109–131. Elsevier, Amsterdam.
  • Barnes, D.J. and Crossland, C.J. 1980. Diurnal and seasonal variations in the growth of a staghorn coral measured by time−lapse photography. Limnology and Oceanography 25: 1113–1117.
  • Beauvais, L. 1982. Sur la taxonomie des Madréporaires mésozoïques. Acta Palaeontologica Polonica 25: 345–360.
  • Bourne, G.C. 1887. On the anatomy of Mussa and Euphyllia, and the morphology of the madreporarian skeleton. Quarterly Journal of Microscopical Science 28: 21–52.
  • Bryan, W.H. and Hill, D. 1942. Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proceedings of the Royal Society of Queensland 52: 78–91.
  • Cairns, S.D. 1977. A revision of the recent species of Stephanocyathus (Anthozoa: Scleractinia) in the western Atlantic, with descriptions of two new species. Bulletin of Marine Science 27: 729–739.
  • Cairns, S.D. 1979. The deep−water Scleractinia of the Caribbean Sea and adjacent waters. Studies on the fauna of Curaçao and other Caribbean islands 67 (180): 341.
  • Cairns, S.D. 1995. The marine fauna of New Zeland: Scleractinia (Cnidaria: Anthozoa).New Zealand Oceanographic Institute Memoir 103: 1–210.
  • Cecchini, C. 1914. Su due nuovi Turbinolidae del Mediterraneo (diagnosi preliminari). Monitore Zoologico Italiano 25: 151–152.
  • Cheng, H., Adkins, J.F., Edwards, R.L., and Boyle, E.A. 2000. 230Th dating of deep−sea corals. Geochimica et Cosmochimica Acta 64: 2401–2416.
  • Clode, P.T. and Marshall, A.T. 2002. Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue and Cell 34: 187–198.
  • Clode, P.T. and Marshall, A.T. 2003a. Skeletal microstructure of Galaxea fascicularis exsert septa: a high−resolution SEM Study. Biological Bulletin 204: 146–154.
  • Clode, P.T. and Marshall, A.T. 2003b. Calcium associated with fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220: 153–161.
  • Constantz, B.R. 1986a. Coral skeleton construction: a physiochemically dominated process. Palaios 1: 152–157.
  • Constantz, B.R. 1986b. The primary surface area of corals and variations in their susceptibility to diagenesis. In: J.H. Schroeder and B.H. Purser (eds.), Reef Diagenesis, 77–90. Springer Verlag, Berlin.
  • Constantz, B.R. and Meike, A. 1990. Calcite centers of calcification in Mussa angulosa (Scleractinia), In: R.E. Crick (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals, 201–207. Plenum Press, New York.
  • Cuif, J.P. 1973. Recherches sur les Madréporaires du Trias. I. Famille Stylophyllidae. Bulletin du Muséum National d’Histoire naturelle, sér. 3, 97, Sciences de la Terre 17: 211–291.
  • Cuif, J.P. 1975. Caractères morphologiques, microstructuraux et systématiques des Pachythecalidae, nouvelle famille de Madréporaires triasiques. Geobios 8: 157–180.
  • Cuif, J.P. 1977. Arguments pour une relation phylétique entre les madréporaires paléozoïques et ceux du Trias. Implications systématiques de l’analyse microstructurale des Madréporaires triasiques. Mémoires de la Société Geologique de France 129: 1–54.
  • Cuif, J.P. and Dauphin, Y. 1998. Microstructural and physico−chemical characterization of “centers of calcification” in septa of some Recent scleractinian corals. Paläontologische Zeitschrift 72: 257–270.
  • Cuif, J.P. and Sorauf, J.E. 2001. Biominaralization and diagenesis in Scleractinia: part I, biomineralization.Bulletin of the Tohoku University Museum 1: 144–151.
  • Cuif, J.P., Dauphin, Y., and Gautret, P. 1997. Biomineralization features in scleractinian coral skeletons: source of new taxonomic criteria. Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 92: 129–141.
  • Cuif, J.P., Dauphin, Y., and Gautret, P. 1999. Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine−scale growth structures of fibers: discussion of consequences for biomineralization and diagenesis. International Journal of Earth Sciences 88: 582–592.
  • Cuif J.P., Dauphin, Y., Denis A., Gautret, P., Lawniczak, A., and Raguideau, A. 1987. Résultats récents concernant l’analyse des biocristaux carbonatés; implications biologiques et sédimentologiques. Bulletin de la Société Géologique de France 8e ser., III, 2 : 269–288.
  • Cuif, J.P., Dauphin, Y., Doucet, J., Salome, M., and Susini, J. 2003. XANES mapping of organic sulfate in three scleractinian coral skeleton. Geochimica et Cosmochimica Acta 67: 75–83.
  • Cuif, J.P., Dauphin, Y., Freiwald, A. Gautret, P., and Zibrowius, H. 1999. Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comparative Biochemistry and Physiology A 123: 269–278.
  • Cuif, J.P., Denis, A., Gautret, P., Marin, F., Mastandrea, A., and Russo, F. 1992. Recherches sur l’altération diagénétique des biominéralisations carbonatées: évolution de la phase organique intrasquelettique dans des polypiers aragonitiques de Madréporaires du Cénozoïque (Bassin de Paris) et du Trias supérieur (Dolomites et Turquie). Comptes Rendus de l'Académie des Sciences de Paris 314: 1097–1102.
  • Cuif, J.P., Lecointre, G., Perrin, C., Tillier, A., and Tillier, S. 2003. Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zoologica Scripta 32: 459–473.
  • Dauphin, Y. 2001. Nanostructures de la nacre des tests de céphalopodes actuels (Nanostructures of the nacreous layers in Recent cephalopod shells). Paläontologische Zeitschrift 75: 113–122.
  • De Beer, D., Kühl, M., Stambler, N., and Vaki, L. 2000. A microsensor study of light enhanced Ca²⁺ uptake and photosynthesis in the reefbuilding hermatypic coral Favia sp. Marine Ecology Progress Series 194: 75–85.
  • Dillon, J.F. and Clark, G.R. II. 1980. Growth line analysis as a test for contemporaneity in populations. In: D.C. Rhoads and R.A. Lutz (eds.), Skeletal Growth in Aquatic Organisms, 395–415. Plenum, New York.
  • Domart−Coulon, I.J., Elbert, D.C., Scully, E.P., Calimlim, P.S., and Ostrander, G.K. 2001. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proceedings of the National Academy of Sciences 98: 11885–11890.
  • Duerden, J.E. 1902. West Indian madreporarian polyps. National Academy of Sciences (Washington), Memoir 7: 399–648.
  • Duncan, P.M. 1876. Notices of some deep−sea and littoral corals from the Atlantic Ocean, Caribbean, Indian, New−Zealand, Persian Gulf, and Japanese & c. Seas. Proceedings of the Zoological society of London 1876: 428–442.
  • Duncan, P.M. 1877. On the rapidity of growth and variability of some Madreporaria on an Atlantic cable, with remarks upon the rate of accumulation of Foraminiferal deposits. Proceedings of the Royal Society of London 26 (180): 133–137.
  • Ellis, J. and Solander, D. 1786. The Natural History of Many Curious and Uncommon Zoophytes, Collected From Various Parts of the Globe. xii + 206 pp. B. White and son, P. Elmsly, London.
  • Esper, E.J.C. 1794. Fortsetzungen der Pflanzenthiere in Abbildungen nach der Natur mit Farben erleuchtet. Vol. 1 (1–2). 64 pp. Nürnberg.
  • Fedorowski, J. 1974. The Upper Palaeozoic tetracoral genera Lophophyllidium and Timorphyllum. Palaeontology 17: 441–473.
  • Fichez, R. 1990. Decrease in allochthonous organic inputs in dark submarine caves, connection with lowering in benthic community richness. Hydrobiologia 207: 61–69.
  • Fowler, G.H. 1887. The anatomy of the Madreporaria: III. Quarterly Journal of Microscopical Science 28: 1–19.
  • Frech, F. 1890. Die Korallenfauna der Trias. Die Korallen der juvavischen Triasprovinz. Palaeontographica 37: 1–116.
  • Freiwald, A. and Wilson, J.B. 1998. Taphonomy of modern deep, cold−temperate coral reefs. Historical Biology 13: 37–52.
  • Freiwald, A., Henrich, R., and Pätzold, J. 1997. Anatomy of a deep−water coral reef mound from Stjernsund, West Finmark, North Norway. Society for Sedimentary Geology, Special Volume 56: 141–162
  • Fukuda, I., Ooki, S., Fujita, T., Murayama, E., Nagasawa, H., Isa, Y., and Watanabe, T. 2003. Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochemical and Biophysical Research Communications 304: 11–17.
  • Gautret, P. and Marin, F. 1993. Evaluation of diagenesis in scleractinian corals and calcified demosponges by substitution index measurement and intraskeletal organic matrix analysis. Courier Forschungsinstitut Senckenberg 164: 317–327.
  • Gautret, P., Cuif, J.P., and Stolarski, J. 2000. Organic components of the skeleton of scleractinian corals—evidence from in situ acridine orange staining. Acta Palaeontologica Polonica 45: 107–118.
  • Gill, G.A. and Lafuste, J.G. 1971. Madréporaires simples du Dogger d’Afghanistan: étude sur les structures de type “Montlivaltia”. Mémoires de la Société Géologique de France (n.s.) 50: 1–40.
  • Gladfelter, E.H. 1982. Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1: 45–51.
  • Gladfelter, E.H. 1983. Skeletal development in Acropora cervicornis II. Diel patterns of calcium carbonate accretion. Coral Reefs 2: 91–100.
  • Goreau, T.F. 1959. The physiology of the skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biological Bulletin 116: 59–75.
  • Goreau, N.I. and Hayes, R.L. 1977. Nucleation catalysis in coral skeletogenesis. Proceedings, Third International Coral Reef Symposium, Rosenstiel School of Marine and Atmospheric Science, Miami 2 (Geology), 439–445.
  • Goldberg, W.M. 2001. Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi. Tissue and Cell 33: 376–387.
  • Gravier, C.J. 1915. Sur quelques traits de la biologie des Coraux des grandes profondeurs sousmarines. Comptes rendus hebdomadaires des séances de l’Académie des sciences 160 (12): 380–382.
  • Grégoire, C. 1987. Ultrastructure of the Nautilus shell. In: W.B. Saunders and N.H. Landman (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil, 463–486. Plenum Press, New York.
  • Hayes, R.L. and Goreau, N.I. 1977a. Cytodynamics of coral calcification. Proceedings, Third International Coral Reef Symposium, Rosenstiel School of Marine and Atmospheric Science, Miami, 433–438.
  • Hayes, R.L. and Goreau, N.I. 1977b. Intracellular crystal−bearing vesicles in the epidermis of scleractinian corals, Astrangia danae (Agassiz) and Porites porites (Pallas). Biological Bulletin 152: 26–40.
  • Hidaka, M. 1991a. Deposition of fusiform crystals without apparent diurnal rhythm at the growing edge of septa of the coral Galaxea fascicularis. Coral Reefs 10: 41–45.
  • Hidaka, M. 1991b. Fusiform and needle−shaped crystals found on the skeleton of a coral, Galaxea fascicularis. In: S. Suga and H. Nakahara (eds.), Mechanisms and Phylogeny of Mineralization in Biological Systems, 139–143. Springer Verlag, Tokyo.
  • Howe, S.A. and Marshall, A.T. 2002. Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). Journal of Experimental Marine Biology and Ecology 275: 63–81.
  • Iljina, T.G. [Il’ina, T.G.] 1984. Historical development of corals [in Russian]. Trudy Paleontologičeskogo Instituta 198: 1–183.
  • Isa, Y. 1986. An electron microscope study on the mineralization of the skeleton of the staghorn coral Acropora hebes. Marine Biology 93: 91–101.
  • Jell, J.S. 1974. The microstructure of some scleractinian corals. Proceedings of the 2nd International Coral Reef Symposium, Brisbane 2: 301–320.
  • Jell, J.S. 1975. Preliminary notes on the microstructure and growth of scleractinian corals. Proceedings of Crown−of−Thorns Starfish Seminar, Brisbane. 6th September 1974. Australian Government Publishing Service, Canberra.
  • Jell, J.S. and Hill, D. 1974. The microstructure of corals. In: B.S. Sokolov (ed.), Ancient Cnidaria (Vol. 1), 8–14. Nauka, Novosibirsk.
  • Johnston, I.S. 1980. The ultrastructure of skeletogenesis in hermatypic corals. International Review of Cytology 67: 171–214.
  • Kato, M. 1963. Fine skeletal structures in Rugosa. Journal of the Faculty of Science Hokkaido University 11: 571–630.
  • Koch, G., von. 1882. Über die Entwicklung des Kalkskeletes von Asteroides calycularis und dessen morphologische Bedeutung. Mittheilungen aus der Zoologischen Station zu Neapel 3: 284–292.
  • Koker, E.M.J. 1924. Anthozoa uit het Perm van het eiland Timor, I: Zaphrentidae, Plerophyllidae, Cystiphyllidae, Amphiastreidae. Jaarboek van het mijnwezen in Nederlansch Oost−Indië 51 (1922): 1–50.
  • Lazier, A.V., Smith, J.E., Risk, M.J., and Schwarcz, H.P. 1999. The skeletal structure of Desmophyllum cristagalli: the use of deep−water corals in sclerochronology. Lethaia 32: 119–130.
  • Le Tissier, M.d’A. 1988. Patterns of formation and the ultrastructure of the larval skeleton of Pocillopora damicornis. Marine Biology 98: 493–501.
  • Le Tissier, M.d’A. 1991. The nature of the skeleton and skeletogenic tissue in the Cnidaria. Hydrobiologia 216/217: 397–402.
  • Levy, O., Mizrahi, L., Chadwick−Furman, N.E., and Achituv, Y. 2001. Factors controlling the expansion behavior ofFavia favus(Cnidaria: Scleractinia): Effects of light, flow, and planktonic prey. Biological Bulletin 200: 118–126.
  • Linnaeus, C. 1767. Systema naturae, sive Regna tria Naturae systematice proposita per classes, ordines, genera et species 1 (2) 12 edition, 533–1327. Laurentius Salvius, Stockholm.
  • Marenzeller E., von, 1904. Steinkorallen. Wissenschaftliche Ergebnisse der Deutschen Tiefsee−Expedition auf dem Dampfer “Valdivia” 1898–1899, 7 (3): 261–318.
  • Marenzeller, E., von 1888. Ueber einige japanische Turbinoliiden. Annales des K.−K. Naturhistorischen Hofmuseums Wien 3: 15–22.
  • Marshall, A.T. 1996. Calcification in hermatypic and ahermatypic corals. Science 271: 637–639.
  • Marshall, A.T. and Clode, P. 2002. Effect of increased calcium concentration in sea water on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. The Journal of Experimental Biology 205: 2107–2113.
  • Marshall, A.T. and Wright, A. 1998. Coral calcification: autoradiography of a scleractinian coral Galaxea fascicularis after incubation in ⁴⁵Ca and ¹⁴C. Coral Reefs 17: 37–47.
  • Matthai, G. 1914. A revision of the Recent colonial Astraeidae possessing distinct corallites. Transactions of the Linnean Society of London, Ser. 2 (Zoology) 17: 1–140.
  • McConnaughey, T.A.1989. Biomineralization mechanisms. In: R.E. Crick (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals, 57–73. Plenum Press, New York.
  • McConnaughey, T.A. and Whelan, J.F. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth Science Reviews 42: 95–117.
  • Mikkelsen, N., Erlenkauser, H., Killingley, J.S., and Berger, W.H. 1982. Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 5: 163–171.
  • Montanaro−Gallitelli, E. 1975. Hexanthiniaria, a new ordo of Zoantharia (Anthozoa, Coelenterata). Bollettino della Società Paleontologica Italiana 14: 21–25.
  • Mortensen, P.B. and Rapp, H.T. 1998. Oxygen and carbon isotope rations related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthozoa, Scleractinia): Implications for determination of linear extension rates. Sarsia 83: 433–446.
  • Morycowa, E. and Roniewicz, E. 1990. Revision of the genus Cladophyllia and description of Apocladophyllia gen. n. (Cladophylliidae fam. n., Scleractinia). Acta Palaeontologica Polonica 29: 165–187.
  • Ogilvie, M. 1897. Microscopic and systematic study of madreporarian types of corals. Philosophical Transactions of the Royal Society of London 187B: 83–345.
  • Philippi. R.A. 1842. Zoologische Beobachtungen. 6. Verzeichniss der im Mittelmeer von mir beobachteten Arten Cyathina Ehrenberg. Archiv für Naturgeschichte 8: 40–44.
  • Pourtalès, L.F., de 1874. Zoological results of the Hassler expedition. Deep−sea corals. Illustrated catalogue of the Museum of Comparative Zoology [4] 8: 33–49.
  • Pratz, E. 1882. Über die verwandtschazftlichen Beziehungen einiger Korallengattungen mit hauptsächlicher Berücksichtigung ihrer Septalstructur. Palaeontographica 29: 81–122.
  • Risk, M.J., Heikoop, J.M., Snow, M.G., and Beukens, R. 2002. Lifespans and growth patterns of two deep−sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471: 125–131.
  • Roberts, J.M. and Anderson, R.M. 2002. A new laboratory method for monitoring deep−water coral polyp behaviour. Hydrobiologia 471: 143–148.
  • Romano, S.L. and Cairns, S.D. 2000. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science 67: 1043–1068.
  • Roniewicz, E. 1989. Triassic scleractinian corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Oesterreichische Akademie der Wissenschaften, Mathematisch−Naturwissenschaftliche Klasse Denkschriften 126: 1–152.
  • Roniewicz, E. 1996. The key role of skeletal microstructure in recognizing high−rank scleractinian taxa in the stratigraphic record. Palaeontological Society Papers 1: 187–206
  • Roniewicz, E. and Morycowa, E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg 164: 233–240.
  • Roniewicz, E. and Stolarski, J. 1999. Evolutionary trends in the epithecate scleractinian corals. Acta Palaeontologica Polonica 44: 131–166.
  • Roniewicz, E. and Stolarski, J. 2001. Triassic roots of the amphiastraeid scleractinian corals. Journal of Paleontology 75: 34–45.
  • Schindewolf, O., von 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Eine Studie über den Bau der “Tetrakorallen” und ihre Beziehungen zu den Madreporarien. Abhandlungen des Reichsamts für Bodenforschung, N.F. 204: 1–324.
  • Schouppé, A., von and Stacul, P. 1955. Die genera Verbeeliella Penecke, Timorphyllum Gerth, Wannerophyllum n. gen., Lophophyllidium Grabau aus dem Perm von Timor. Palaeontolographica, Supplement 4 (5): 95–196.
  • Schouppé, A., von and Stacul, P. 1966. Morpohogenese und Bau des Skelettes der Pterocorallia. Palaeontographica, Supplement 11: 1–186.
  • Sorauf, J.E. 1972. Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Palaeontology 15: 88–107.
  • Sorauf, J.E. and Cuif, J.P. 2001. Biominaralization and diagenesis in Scleractinia: part II, diagenesis. Bulletin of the Tohoku University Museum 1: 152–163.
  • Sorauf, J.E. and Freiwald, A. 2002. Skeletal structure in the rugosan genus Calophyllum from Permian strata of Timor: comparisons with the living deep water coral Lophelia pertusa.Coral Research Bulletin 7: 191–207.
  • Sorauf, J.E. and Jell J.S. 1977. Structure and incremental growth in the ahermatypic coral Desmophyllum cristagalli from the North Atlantic. Palaeontology 20: 1–19.
  • Sorauf, J.E. and Podoff, N. 1977. Skeletal structure in deep water ahermatypic corals. Mémoires du Bureau de recherches géologiques et miničres 89: 2–11.
  • Stolarski, J. 1990. On Cretaceous Stephanocyathus (Scleractinia) from the Tatra Mts. Acta Palaeontologica Polonica 35: 31–39.
  • Stolarski, J. 1995. Ontogenetic development of the thecal structures in caryophylliine scleractinian corals. Acta Paleontologica Polonica 40: 19–44.
  • Stolarski, J. 1999. Early ontogeny of the skeleton of Recent and fossil Scleractinia and its phylogentic significance. Abstracts of the VIII. International Symposium on Fossil Cnidaria including Archaeocyatha and Porifera. Sendai, 37.
  • Stolarski, J. 2000. Origin and phylogeny of Guyniidae (Scleractinia) in the light of microstructural data. Lethaia 33: 13–38.
  • Stolarski, J. and Roniewicz, E. 2001. Towards a new synthesis of evolutionary relationships and classification of Scleractinia. Journal of Paleontology 75: 1090–1108.
  • Stolarski, J. and Russo, A. 2001. Evolution of the post−Triassic pachythecaliine corals. Bulletin of the Biological Society of Washington 10: 242–256.
  • Stolarski, J. and Russo, A. 2002. Microstructural diversity of the stylophyllid (Scleractinia) skeleton. Acta Palaeontologica Polonica 47: 651–666.
  • Strömgren, T. 1987. The effect of light on the growth rate of intertidal Acropora pulchra from Phuket, Thailand, latitude 8 degrees North. Coral Reefs 6: 43–47.
  • Teichert, C. 1958. Cold− and deep−water coral banks. Bulletin of the American Association of Petroleum Geologists 42: 1064–1082.
  • Vaughan, T.W. and Wells, J.W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America, Special Paper 44: 1–363.
  • Veron, J.E.N. Odorico D.M. Chen C.A., and Miller D.J. 1996. Reassessing evolutionary relationships of scleractinian corals.Coral Reefs 15: 1–9.
  • Wainwright, S.A. 1963. Skeletal organization in the coral, Pocillopora damicornis. The Quarterly Journal of Microscopical Scince 104: 169–183.
  • Waite, J.H. and Andersen, S.O. 1980. 3,4−Dihydroxyphenylalanine and the sclerotization of periostracum in Mytilus edulis. Biological Bulletin 158: 164–173.
  • Watabe, N., Oishi, M., and Kingsley, R.J. 1991. The organic matrix of spicules of the gorgonian Leptogorgia virgulata. In: S. Suga and K. Nakahara (eds.), Mechanisms and Phylogeny of Mineralization in Biological Systems, 9–16. Springer−Verlag, Tokyo.
  • Wells, J.W. 1956. Scleractinia. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, part F (Coelenterata), F328–F444. The University of Kansas Press, Lawrence, Kansas.
  • Wells, J.W. 1963. Coral growth and geochronometry.Nature 197: 948–950.
  • Wells, J.W. 1970. Problems of annual and daily growth−rings in corals. In: S.K. Runcorn (ed.), Palaeogeophysics, 3–9. Academic Press, London.
  • Weyer, D. 1980. Zwei Ufimia−Arten aus dem Erdbacher Kalk im Rheinichen Schiefergebirge (Anthozoa, Rugosa; Unterkarbon). Abhandlungen und Berichte für Naturkunde und Vorgeschichte 12: 3–25.
  • Wilson, J.B. 1979. “Patch” development of the deep−water coral Lophelia pertusa (L.) on Rockall Bank. Journal of the Marine Biological Association of the United Kingdom 59: 165–177.
  • Wise, S.W. 1972. Observations of fasciculi on developmental surfaces of scleractinian coral exoskeletons. Biomineralization, Research Reports 6: 160–175.
  • Wise, S.W., Stieglitz, R.D., and Hay. W.W. 1970. Scanning electron microscope study of fine grain size biogenic carbonate particles. Gulf Coast Association of Geological Societies Transactions 20: 287–302.
  • Yamashiro, H. and Samata, T. 1996. New type of organic matrix in corals formed at the decalcified site: structure and composition. Comparative Biochemistry and Physiology 113A: 297–300.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1f832349-184e-477b-97f4-0c772238699a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.