PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 4 |

Tytuł artykułu

The role of lysine-256 in the structure and function of sheep liver recombinant serine hydroxymethyltransferase

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The active site lysine residue, K256, involved in Schiff's base linkage with pyridoxal-5'-phosphate (PLP) in sheep liver recombinant serine hydroxymethyltransferase (rSHMT) was changed to glutamine or arginine by site-directed mutagenesis. The purified K256Q and K256R SHMTs had less than 0.1% of catalytic activity with serine and H4folate as substrates compared to rSHMT. The mutant enzymes also failed to exhibit the characteristic visible absorbance spectrum (lambda(max) 425 nm) and did not produce the quinonoid intermediate (lambda(max) 495 nm) upon the addition of glycine and H4folate. The mutant enzymes were unable to catalyze aldol cleavage of beta-phenylserine and transamination of D-alanine. These results suggested that the mutation of the lysine had resulted in the inability of the enzyme to bind to the cofactor. Therefore, the K256Q SHMT was isolated as a dimer and the K256R SHMT as a mixture of dimers and tetramers which were converted to dimers slowly. On the other hand, rSHMT was stable as a tetramer for several months, further confirming the role of PLP in maintenance of oligomeric structure. The mutant enzymes also failed to exhibit the increased thermal stability upon the addition of serine, normally observed with rSHMT. The enhanced thermal stability has been attributed to a change in conformation of the enzyme from open to closed form leading to reaction specificity. The mutant enzymes were unable to undergo this conformational change probably because of the absence of bound cofactor.

Wydawca

-

Rocznik

Tom

44

Numer

4

Opis fizyczny

p.679-688,fig.

Twórcy

autor
  • Indian Institute of Science, Bangalore 560 012, India
autor
autor
autor
autor

Bibliografia

  • Alexander, D.C. (1987) An efficient vector-primer cDNA cloning system: Large scale prepara­tion of competent cells. Meth. Rnzymol. 154, 41-64.
  • Bhaskar, B., Prakash, V., Savithri, U.S. & Appaji Rao, N. (1994) Interaction of L-serine at the active site of serine hydroxylmethytrans- ferase: Induction of thermal stability. Bio- chim. Biophys. Acta 1209, 40-50.
  • Bhatia, M.B., Futaki, S., Unco, H., Manning, J.M., Ringe, D., Yoshimura, T. & Soda, K. (1993) Kinetic and stereochemical compari­son of wild-type and active-site K145Q mu­tant enzyme of bacterial I)-amino acid tran­saminase. J. Biol. Chem. 268, 6932-6938.
  • Brahatheeswaran, B., Prakash, V., Savithri, H. S. & Appaji Rao, N. (1996) Interaction of sheep liver Apo-serine hydroxymethyltrans- ferase with pyridoxal-5'-phosphate: A physi- cochemical, kinetic, and thermodynamic study. Arch. Biochem. Biophys. 330, 363-372.
  • Futaki, S„ Uneo, H., delPozo, A.M., Pospichili, M.A. & Manning, J.M. (1990) Substitution of glutamine for lysine at the pyridoxal-phos­phate binding site of bacterial D-amino acid transaminase. J. Biol. Chem. 265, 22306- 22312.
  • Grimm, B., Smith, M.A. & von Wettstein, D. (1992) The role of lysine-272 in the pyridoxal- 5'-phosphate active site of Synechococcus glu- tamate-l-semialdehyde aminotransferase. Eur. J. Biochem. 206. 579-585.
  • Hatefi, Y., Talbert, P.T., Osborn, M.J. & Huen- nekens, F.M. (1959) Tetrahydrofolic acid —5,6,7,8-tetrahydropteroyl-glutamic acid. Bio­chem. Prep. 7, 89-92.
  • Hag, L.L. & Jahn, D. Í1992) Activity and spectro­scopic properties of the Escherichia coli glu- tamate semialdehyde aminotransferase and the putative active site mutant K256R. Bio­chemistry 31, 7143-7151.
  • Jagath-Reddy, J., Ganesan, K., Savithri, H.S., Datta, A. & Appaji Rao, N. (1995) cDNA clon­ing, overexpression in Escherichia coli, puri­fication and characterization of sheep liver cytosolic serine hydroxymethyltransferase. Eur. J. Biochem. 230, 533-537.
  • Jagath-Reddy, J., Appaji Rao, N. & Savithri, H.S. (1996) 3' Non-templated "A" addition by Taq DNA polymerase: An advantage in the con­struction of single and double mutants. Curr. Sci. 71, 710-712.
  • Jagath, «J.R., Sharma, B., Bhaskar, B., Datta, A., Appaji Rao, N. & Savithri, H.S. (1997) Impor­tance of the amino terminus in maintenance of oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase. Eur. J. Biochem. 247, 372-379.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Ran­dall, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
  • Lu, Z., Nagata, S., McPhie, P. & Miles, E.W. (1993) Lysine 87 in the (5-subunit of trypto­phan synthase that forms an internal aldi- mine with pyridoxal phosphate serves critical roles in transamination, catalysis, and prod­uct release. J. Biol. Chem. 268, 8727-6734.
  • Manohar, R., Ramesh, K.S. & Appaji Rao, N. (1982) Purification, physicochemical and regulatory properties of serine hydroxy­methyltransferase from sheep liver. J. Biosci. (Bangalore) 4, 31-50.
  • Nishimura, K., Tanizawa, K., Yoshimura, T., Esake, N., Futake, S., Manning, J.M. & Soda, K. (1991) Effect of substitution of a lysyl residue that binds pyridoxal phosphate in thermostable D-amino acid aminotransferase by arginine and alanine. Biochemistry 30, 4072-4077.
  • Planas, A. & Kirsch, J.F. (1991) Reengineering the catalytic lysine of aspartate aminotrans­ferase by chemical elaboration of a genetically introduced cysteine. Biochemistry 30, 8268-8276.
  • Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular cloning: A laboratory manual; 2nd cdn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Schirch, V. (1984) Folate in serine and glycine metabolism; in Folates and Pterines-chemis- try and Biochemistry of Folates (Blakely, R.L. & Benkovic, S.J., eds.) vol. 1, pp. 399-431, John Wiley & Sons Inc, New York.
  • Schirch, D., DellaFrattes, S., Iurescia, S., An- gelaccio, S., Contestabiles, R., Bossa, F. & Schirch, V. (1993) Function of the active-site lysine in Escherichia coli serine hydroxy- methytransferase. J. Biol. Chem. 268,23132- 23138.
  • Smith, D.L., Almo, S.C., Toney, M.D. & Ringe, D. (1989) 2.8 A-resolution structure of an active site mutant of aspartate aminotransferase from Escherichia coli. Biochemistry 28,8161- 8167.
  • Studier, F.W. & Moffat, B.A. (1986) Use of bacte­riophage T7 RNA polymerase to direct selec­tive high level expression of cloned genes. J. Mol. Biol. 189, 113-130.
  • Taylor, R.T. & Weissbach, H. (1965) A radioactive assay for serine transhydroxymethylase. Anal. Biochem. 13, 80-84.
  • Toney, M.D. & Kirsch, J.F. (1991) The K258R mutant of aspartate aminotransferase stabilizes the quinonoid intermediate. J. Biol. Chem. 266, 23900-23903.
  • Toney. M.D. & Kirsch, J.F. (1992)Bronsted analy­sis of aspartate aminotransferase via exoge­nous catalysis reactions of an inactive mu­tant. Protein Sci. 1, 107-119.
  • Ulevitch, R.J. & Kallen, R.G. (1977) Purification and characterization of pyridoxal-5'-phos- phate dependent serine hydroxymethylase from lamb liver and its action upon p-phenyl- serine. Biochemistry 16, 5342- 5349.
  • Usha, R., Savithri, U.S. & Appaji Rao, N. (1992) Arginine residues involved in binding of tetra- hydrofolate to sheep liver serine hydroxy- methyltransferase. J. Biol. Chem. 267,9289- 9293.
  • White, F.L. & Olsen, K.W. (1987) Effects of cross linking on the thermal stability of hemoglo­bin. Arch. Biochem. Biophys. 258, 51-57.
  • Ziak, M., Jaussi, R., Gehring, H. & Christen, P. (1990) Aspartate aminotransferase with the pyridoxal-5'-phosphate binding lysine residue replaced by histidine retains partial catalytic competence. Eur. J. Biochem. 187. 329-333.
  • Ziak, M., Jager, J., Malashkevich, V.N., Gehring, H., Jaussi, R., Janosonius, J.N. & Christen, P. (1993) Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate binding residue-structural and catalytic prop­erties. Eur. J. Biochem. 211, 475-484.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1f7e1763-869e-444c-ac4f-8623d8228bcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.