PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 4 |

Tytuł artykułu

The access of metabolites into yeast mitochondria in the presence and absence of the voltage dependent anion selective channel [YVDAC1]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Since yeast Saccharomyces cerevisiae mutants depleted of the voltage dependent anion selective channel (YVDAC1) are still able to grow on a non-fermentable carbon source, a functional transport system in the outer mitochondrial membrane must exist to support the access of metabolites into mitochondria. It was assumed that the properties of the system could be inferred from the differences in the results observed between wild type and mutant mitochondria since no crucial differences in this respect between the two types of mitoplasts were observed. YVDAC1-depleted mitochondria displayed a highly reduced permeability of the outer membrane, which was reflected in increased values of KNADH0.5 for respiration and KADP0.5 for triggering phosphorylating state as well as in delayed action of carboxyatractylate (CATR) in inhibition of phosphorylating state. The parameters were chosen to express the accessibility of the applied species to the intermembrane space. The passage of the molecules through the outer membrane depleted of YVDAC1 could be partially improved in the presence of bivalent cations (Mg2+, Ca2+), as in their presence lower values of the calculated parameters were obtained. The restrictions imposed on the transport of molecules through the YVDAC1-depleted outer membrane resulted in a competition between them for the access to the intermembrane space as measured by changes in parameters observed for a given species in the presence of another one. The competition was stronger in the absence of Mg2+ and depended on charge and size of transported molecules, as the strongest competitor was CATR and the weakest one - NADH. Thus, it can be concluded that the transport system functioning in the absence of YVDAC1 is modulated by bivalent cations and charge as well as size of transported molecules. Since an increased level of respiration due to the dissipation of Δψ causes an increase of KNADH0.5 in both wild type and YVDAC1-depleted mitochondria it is concluded that a common property of YVDAC1 and the system functioning in YVDAC1-depleted mitochondria seems to be the dependence of the capacity on the level of mitochondrial respiration.

Wydawca

-

Rocznik

Tom

46

Numer

4

Opis fizyczny

p.991-1000,fig.

Twórcy

autor
  • Poznan University, A.Fredry 10, 61-701 Poznan, Poland
autor
autor

Bibliografia

  • 1. Benz, R. (1994) Permeation of hydrophilic sol­utes through mitochondrial outer membranes: Review on mitochondrial porins. Biochinu Biophys. Acta 1197, 167-196.
  • 2. Colombini, M., Blachly-Dyson, E. & Forte, M. (1996) VDAC, a channel in the outer mitochon­drial membrane; in Ion Channels (Narahashi, T., ed.) vol. 4, pp. 169-201, Plenum Press, New York.
  • 3. Guo, X.J. & Lauquin, G.J.-M. (1986) Mitochon­drial porin-deficient mutant of S. cerevisiae: In vitro construction and preliminary properties. EBEC Reports 4, p. 292.
  • 4. Dihanich, M., Suda, K. & Schatz, G. (1987) A yeast mutant lacking mitochondrial porin is respiratory-deficient, but can recover respira­tion with simultaneous accumulation of an 86- kDa extramitochondrial protein. EMBO J. 6, 723-728.
  • 5. Michejda, J., Guo, X.J. & Lauquin, G.J.-M. (1989) Bioenergetic consequences of the lack of mitochondrial porin: Identification of a pu­tative new pore; in Anion Carriers of Mitochon­drial Membranes (Azzi, A., ed.) pp. 225-235, Springer-Verlag, Berlin, Heidelberg.
  • 6. Michejda, J., Guo, X.J. & Lauquin, GJ.-M. (1990) The respiration of cells and mitochon­dria of porin deficient yeast mutants is cou­(1991) pled. Biochem. Biophys. Res. Commun. 171, 354-361.
  • 7. Blachly-Dyson, E., Song, J., Wolfgand, W.J., Colombini, M. & Forte, M. (1997) Multicopy suppressors of phenotype resulting from the absence of yeast VDAC encode a VDAC-like protein. Mol Ceil Biol 17, 5727-5738.
  • 8. Guo, X.J. (1988) Isolement et characterisation du gene la porine mitochondriale de 5. cere- visiae. Etude de l'expression du gene et con­struction de mutants deficients en porine. D.Sc. thesis, University of Aix-Marseille II.
  • 9. Michejda, J., Kmita, H., Stobienia, O., Budzińska, M. & Lauquin, G.J.-M. (1994) Re­striction of metabolite permeation through the outer mitochondrial membrane of porin-deficient yeast mutant; in Molecular Bi­ology of Mitochondrial Transport System (Forte M. & Colombini, M., eds.) pp. 341-356, Springer-Verlag, Heidelberg.
  • 10. Dihanich, M., Schmid, A., Oppliger, W. & Benz, R. (1989) Identification of a new pore in the mitochondrial outer membrane of a porin- deficient yeast mutant. Eur. J. Biochem. 181, 703-708.
  • 11. Benz, R., Schmid, A. & Dihanich, M. (1989) Pores from mitochondrial outer membrane of yeast and a porin-deficient yeast mutant: A comparison. J. Bioener. Biomembr. 21, 439-450.
  • 12. Lee. A.C., Xu, X., Blachly-Dyson, E., Forte, M. & Colombini, M. (1998) The role of yeast VDAC genes on the permeability of the mito­chondrial outer membrane. J. Membrane Biol. 161, 173-181.
  • 13. Daum, G., Bohni, P.C. & Schatz, G. (1982) Im­port of proteins into mitochondria. Cyto­chrome ¿>2 and cytochrome c peroxidase are lo­cated in the intermembrane space of yeast mi­tochondria. J. Biol Chem. 257, 13028- 13033.
  • 14. Douce, R., Bourguignon, J., Brouquisse, R. & Neuberger, M. (1984) Isolation of plant mito­chondria. General principles and criteria of in­tegrity. Methods Enzymol 148, 403-415.
  • 15. Kamo, N., Maratsugu, M.f Hongoh, R. & Kobatake, Y.J. (1979) Membrane potential of mitochondria measured with an electrode sen­sitive to tetraphenyl phosphonium and rela­tionship between proton electrochemical po­tential and phosphorylation potential in steady state. Membr. Biol 49, 105-121.
  • 16. Jaworek, D., Gruber, W. & Bergmeyer, H. (1970) Adenosin-5'-triposphat. Bestimtung mit 3-Phosphoglycerat-kinase; in Methoden der Enzymatischen Analyse (Bergmeyer, H., ed.) pp. 2020-2024, Akademie Verlag, Berlin.
  • 17. Jaworek, D., Gruber, W. & Bergmeyer, H. (1970) Adeno8in-5'-diphosphat und Adenosin- 5'-monophosphat; in: Methoden der Enzymatis­chen Analyse (Bergmeyer, H., ed.) pp. 2051- 2053, Akademie Verlag, Berlin.
  • 18. Chance, B. & Williams, G.R. (1956) The respi­ratory chain and oxidative phosphorylation. Adv. Enzymol 17, 65-87.
  • 19. de Vries, S. & Marres, C.A.M. (1991) The mito­chondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular me­tabolism. Biochinu Biophys. Acta 895, 205- 239.
  • 20. Carafoli, E., Balcavage, X.J., Lehninger, A.L. & Matton, J.R. (1970) Ca2* metabolism in yeast cells and mitochondria. Biochim. Biophys. Acta 205, 18-26.
  • 21. Fevre, F., Chich, J.F., Lauquin, GJ.-M., Henry, J.P. & Thieffry, M. (1990) Comparison of mitochondrial cationic channels in wild-type and porin-deficient mutant yeast. FEBSLett 262, 201-204.
  • 22. Juin, P., Thieffry, M., Henry, J.-P. & Vallette, F.M. (1997) Relationship between the pep- tide-sensitive channel and the mitochondrial outer membrane protein translocation ma­chinery. J. Biol Chem. 272, 6044-6050.
  • 23. Künkele, K.P., Heins, S., Dembowski, M., Nargang, F.E., Benz, R.,Thieffry, M., Walz, J., Lill, R., Nussberger, S. & Neupert, W. (1998) The preprotein translocation channcl of the outer membrane of mitochondria. Cell 93, 1009-1019.
  • 24. Kmita, H., Budzińska, M., Stobienia, 0. & Michejda, J. (1998) Competition between pro­tein import and transport of metabolite into VDAC-depleted yeast mitochondria. EBEC Re­port 10, 148.
  • 25. Kmita, H., Budzińska, M. & Michejda, J. (1999) NADH and proteins may use the same pathway to cross the outer membrane in VDAC-depleted mitochondria. BioL Bull Poznan 36, 5-15.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1dd3de01-d150-4e15-b890-b8c9d03b65c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.