PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 4 |

Tytuł artykułu

Glutamine synthetase and glutamate dehydrogenase in cadmium-stressed triticale seedlings

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO3- as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in compari son to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GSi) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %. Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.339-347,fig.,ref.

Twórcy

autor
  • Agricultural University of Warsaw, Nowoursynowska 159, 02-776 Warsaw, Poland
autor

Bibliografia

  • Barash I. B., Sadan T., Mar H. 1973. Induction of a specific izoenzyme of glutamate dehydrogenase by ammonium in oat leaves. Nature New Biol., 244: 150-152.
  • Bielawski W. 1993. Distribution of glutamine synthetase isoforms in triticale seedlings leaves. Acta Physiol. Plant., 15 (4): 211-218.
  • Boussama N., Ouariti O., Ghorbal M.H. 1999. Changes in growth and nitrogen astimiiation in bariey seedlingsunder cadmium stress. J. Plant Nutr., 22: 731-752.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.
  • Burzyński M. 1988. The uptake and accumulation of phosphotus and nitrates and the activity of nitrate reductase in cucumber seediings. Acta Soc. Bot. Pol., 57: 77-86.
  • Burzyński M., Buczek J. 1994. The influence of Cd, Pb, Cu and Ni on NO3' uptake by cucumber seedlings. I. Nitrate uptake and respiration of cucumber seedlings roots treated with Cd, Pb, Cu and Ni. Acta Physiol. Plant., 16: 291-296.
  • Casano L.M., Desimone M., Trippi V.S. 1989. Proteolytic activity at alkaline pH in oat leaves isolation aminopeptidase. Plant Physiol., 91: 1414-1418.
  • Cataldo D. A., Haroom H., Schreder L. E., Youngs V. 1975. Rapid colorimetric determination of nitrate in plants tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal., 6: 71-80.
  • Chaffei Ch., Gouia H., Ghorbal H. M. 2003. Nitrogen metaboiism in tomato plants under cadmium stress. J. Plant Nutr., 26: 1617-1634.
  • Chassaigne H., Vacchina V., Kutchan T.M., Zenk M.H. 2001. Identification of phytochelatin-related peptides in maize seediings exposed to cadmium and obtained enzymatically in vitro. Phytochemistry 56: 657-668.
  • Chien H-F., Kao Ch. H. 2000. Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci., 156: 111-115.
  • Gouia H., Ghorbal H. M. Meyer Ch. 2000. Effect of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol. Biochem., 38: 629-638.
  • Kłobus G., Burzyński M., Buczek J. 2002. Heavy metals and nitrogen metaboiism. Prasad M.N.V., Strzałka K. (eds.), Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Kluwer Academic Publisher, Dordrecht/Boston/London, 325-355.
  • Krupa Z., Baszyński T. 1995. Some aspects of heavy metal toxicity towards photo synthetic apparatus: direct and inditect eftects on light and dark reactions. Acta Physiol. Plant., 17: 177-190.
  • Kwinta J., Bartoszewicz K., Bielawski W. 2001. Purification and characteristics of glutamate dehydrogenase (GDH) from triticale roots. Acta Physiol. Plant., 23: 271-275.
  • Kwinta J., Cal K. 2005. Effects of salinity stress on the activity of glutamine synthetase and glutamate dehydrogenase in triticale seedlings. Polish J. Eviron. Studies 14: 125-130.
  • Leon A. M., Palma J. M., Corpas F. J., Gomez M., Romero-Puertas M. C., Chatterjee D., Mateos R. M., del Rio L. A., Sandalio L. M. 2002. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol. Biochem., 40: 813-820.
  • Llorens N., Arola L., Blade C., Mas A. 2000. Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Sci., 160: 159-163.
  • Loulakakis K.A., Roubelakis-Angelakis K.A. 1996. The seven NAD(H)-glutamate dehydrogenase izoem zymes exhibit similar anabolic and catabolic activities. Physiol. Plant., 96: 29-35.
  • Miflin B.J., Habash D.M. 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot., 53: 979-987.
  • O Neal D., Joy K.W. 1973. Glutamine synthetase of pea leaves. I. Purification and pH optima. Arch. Biochem. Biophys., 159: 113-122.
  • Oaks A. 1994. Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot., 72: 739-750.
  • Orzechowski S., Kwinta J., Gworek B., Bielawski W. 1997. Biochemical indicators of environmental contamination with heavy metals. Polish J. Environ. Studies 6: 47-50.
  • Poschenrider C., Gunse B., Barcelo J. 1989. Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expandtng bean leaves. Plant Physiol., 90: 1365-1371.
  • Punz W.F., Sieghardt H. 1993. The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot., 33: 85-98.
  • Ranieri A., Castanga A., Scebba F., Careri M., Zagnoni I., Predieri G., Pagliari M., Sanita di Topi L. 2005. Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol. Biochem., 43: 45-54.
  • Sandalio L.M., Dalurzo H.C., Gomez M., Romero-Puertas M.C., del Rio L.A. 2001. Cadmium-induced changes in the growth and oxidative metabolism in pea plants. J. Exp. Bot., 52: 2115-2126.
  • Sanita di Toppi L., Gabbrielli R. 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41: 105-130.
  • Simpson R.J., Dalling M.J. 1981. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). III. Enzymology and transport of amino acids from senescing flag leaves. Planta 151: 447-456.
  • Stieger P. A., Feller U. 1997. Requirements for the light-stimulated degradation of stromal proteins in isolated pea (Pisum sativum L.) chloroplasts. J. Exp. Bot., 48: 1639-1645.
  • Stitt M., Muller C., Matt P., Gibon Y., Carillo P., Morcuende R., Scheible W.-R., Krapp A. 2002. Steps towards an integrated view of nitrogen metabolism. J. Exp. Bot., 53: 959-970.
  • Wójcik M., Tukendorf A. 1999. Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol. Plant., 21: 99-107.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1c685848-57cf-49de-97f9-9416b78998a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.