PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 46 |

Tytuł artykułu

Changes during long-term growth of Desulfotomaculum acetoxidans DSM 771

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Growth rate and concentrations of sulfates, sulfides, proteins and glucosamine were analyzed during long-term (over 60 days) incubation of Desulfotomaculum acetoxidans DSM 771. To imitate natural conditions, incubation was done in obligate anaerobic conditions in three series, without stirring or shaking. In the first 2-3 days of incubation (lag phase), only a decrease of the sulfate level occurred. Between days 2 and 7 of incubation (logarithmic increase phase, log phase) the growth rate and levels of proteins and glucosamine increased significantly. Simultaneously the amount of dissimilated hydrogen sulfide began to increase. Hydrogen sulfide content in parallel samples treated with lysozyme was much higher. Between days 7 and 18 a plateau ascribed to the stationary phase was observed. After 2 weeks of incubation a certain reduction of the measured substances was observed, but from days 20 to 24 the growth rate again increased (‘post-stationary’ phase). The high coefficients of correlation (for individual series 0.6735; 0.7245; 0.8217) between proteins and sulfide levels and control tests done with standards (albumin and Na2S) suggest that H2S and probably sulfides react with proteins and presumably with peptidoglycan. This could explain cumulation of sulfide and its decrease in the post-stationary phase.

Wydawca

-

Rocznik

Tom

46

Opis fizyczny

p.101-107,fig.,ref.

Twórcy

autor
  • Pedagogical University of Krakow, Podbrzezie 3, 31-054 Krakow, Poland

Bibliografia

  • Aeckersberg F, Bak F, and Widdel F. 1991. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Archives of Microbiology 156: 5-14.
  • Badziong W, Thuer RK, and Zeikus JG. 1978. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Archives of Microbiology 116: 41-49.
  • Cava MP, and Levinson MI. 1985. Thionation reactions of Lawesson’s reagents. Tetrachedron 41: 5061-5087.
  • Cypionka H. 1987. Uptake of sulfate, sulfite and thiosulfate by proton-anion symport in Desulfovibrio desulfuricans. Archives of Microbiology 148: 144-149.
  • Dilling W, and Cypionka H. 1990. Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiology Letters 71: 123-128.
  • Fago JK, and Popowsky M. 1949. Spectrophotometric determination of hydrogen sulfide. Methylene blue method. Analytical Chemistry 21: 732-734.
  • Fuseler K, Krekeler D, Sydow U, and Cypionka H. 1996. A common pathway of sulfide oxidation by sulfate-reducing bacteria. FEMS Microbiology Letters 144: 129-134.
  • Johnson MS, Zhulin IB, Gapuzan ME, and Taylor BL. 1997. Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology 176: 5598-5601.
  • Kuever J, Kulmer J, Jannsen S, Fischer U, and Blotevogel KH. 1993. Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Archives of Microbiology 159: 282-288.
  • Legall J, and Fauque G. 1988. Dissimilatory reduction of sulfur compounds. In: Zehnder AJB [ed.], Biology of anaerobic microorganisms, 469-586. AJ Wiley & Sons, New York.
  • Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193: 265-275.
  • Noguera DR, Brusseau G, Rittmann BE, and Stahl DA. 1998. A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental condition. Biotechnology and Bioengineering 59: 732-746.
  • Oguchi M, and Oguchi MS. 1979. Tetraborate concentration on Morgan-Elson reaction and an improved method for hexosamine determination. Analytical Biochemistry 98: 433- 437.
  • Postgate JR. 1984. The sulfate reducing bacteria. 2nd Ed. Cambridge University Press, London.
  • Quatibi AI, Niviere V, and Garcia JL. 1991. Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2- and 1,3-propanediol. Archives of Microbiology 155: 143-148.
  • Rabus R, and Widdel F. 1995. Conversion studies with substrate analogues of toluene in a sulfate-reducing bacterium, strain Tol2. Archives of Microbiology 164: 448-451.
  • Raskin L, Rittmann BE, and Stahl DA. 1996. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Applied Environmental Microbiology 62: 3847-3857.
  • Schnell S, Bak F, and Pfenning N. 1989. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Archives of Microbiology 152: 556-563.
  • Widdel F. 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB. [ed.], Biology of anaerobic microorganisms, 469-586. AJ Wiley & Sons, New York, Toronto, Singapore.
  • Williams WJ. 1985. Handbook of anion determination, 655-657. PWN, Warsaw.
  • WłodekL, and Iciek M. 2003. S-tiolacja białek jako mechanizm antyoksydacyjny i regulacyjny. Postępy Biochemii 49: 77-84.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1c481f77-8a45-42d1-a42f-ecd83558c7c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.