PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 53 | 2 |

Tytuł artykułu

Morphological requirements in limulid and decapod gills: A case study in deducing the function of lamellipedian exopod lamellae

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
According to one hypothesis, the exopods of extinct lamellipedian arthropods functioned as gills. To evaluate this hypothesis, the growth rates in Limulus polyphemus for total gill surface, average area per single gill lamella and number of gill lamellae are documented. The rates are compared with corresponding rates in decapod crustaceans in order to make deductions on morphological constraints in multi−foliated gills. The growth rates are given as allometric scaling exponents relative to the animal dry−body weight. The comparisons reveal that each allometric exponent is similar among examined species irrespective of differences in gill morphology or animal body plans. The numerical growth of lamellae obviously is much smaller than the growth of the total respiratory surface. To fulfill these trends in multi−foliated gills, the overall profile tends to become conical, with the result that the surface area is a couple of magnitudes larger at the base of the cone than at the tip. This geometrical shape appears to keep the numerical value of the total respiratory area (total lamellar surface) proportional to the cube of the total number of lamellae. The situation is entirely different in animals with lamellipedian exopods. In the latter, lamellae are slender structures carried in a straight row and, as exemplified by Naraoia, their increase in number during the growth is only half that required for the exopod lamellae to have functioned as an arthropod multi−foliated gill cone.

Wydawca

-

Rocznik

Tom

53

Numer

2

Opis fizyczny

p.275-283,fig.,ref.

Twórcy

autor
  • Shizuoka University, 836 Ohya, Shizuoka, 422-8529, Japan
autor
autor

Bibliografia

  • Bergström, J. 1973. Organization, life, and systematics of trilobites. Fossils and Strata 2: 1–69.
  • Bergström, J. 1976. Lower Palaeozoic trace fossils from eastern Newfoundland. Canadian Journal of Earth Science 13: 1613–1633.
  • Bruton, D.L. and Haas, W. 1999. The anatomy and functional morphology of Phacops (Trilobita) from the Hunsrück Slate (Devonian). Palaeontographica A 253: 29–75.
  • Cisne, J.L. 1981. Triarthrus eatoni (Trilobita): anatomy of its exoskeletal, skeletomuscular, and digestive systems. Palaeontographica Americana 9: 99–141.
  • Edgecombe, G.D. and Ramsköld, L. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology 73: 263–287.
  • Gray, I.E. 1957. A comparative study of the gill area of crabs. Biological Bulletin of the Marine Biological Laboratory, Woods Hole 112: 34–42.
  • Harrington, H.J. 1959. General description of Trilobita. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, Part O, 38–117. Geological Society of America and University of Kansas Press, Lawrence, Kansas.
  • Henry, R.P., Jackson, S.A., and Mangum, C.P. 1996. Ultrastructure and transport−related enzymes of the gills and coxal grand of the horseshoe crab Limulus polyphemus. Biological Bulletin 191: 241–250.
  • Hou, X−G. and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata 45: 1–116.
  • Hou, X.−G., Aldridge, R.J., Bergström, J., Siveter, D.J., Siveter, D.J., and Feng, X.−H. 2004. The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life. 233 pp. Blackwell Publishing, Malden, Oxford, Victoria.
  • Hughes, G.M. 1983. Allometry of gill dimensions in some British and American decapod Crustacea. Journal of the Zoological Society of London 200: 83–97.
  • Hughes, N.C. 2003. Trilobite tagmosis and body patterning from morphological and developmental perspectives. Integrative and Comparative Biology 43: 185–206.
  • Luckenbach, M.W. and Orth, R.J. 1992. Swimming velocities and behavior of Blue Crab (Callinectes sapidusRathbun) megalopae in still and flowing water. Estuaries 15: 186–192.
  • Manton, S.M. 1977. The Arthropoda. Habits, Functional Morphology, and Evolution. 527 pp. Clarendon Press, Oxford.
  • Mangum, C.P. 1982. The function of gills in several groups of invertebrate animals. In: D.F. Houlihan, J.C. Rankin, and T.J. Shuttleworth (eds.), Gills. Society for Experimental Biology Seminar Series 16: 77–97. Cambridge University Press, Cambridge.
  • Richter, R. 1919. Vom Bau und Leben der Trilobiten. I. Das Schwimmen. Senckenbergiana 1: 213–238.
  • Rudkin, D.M., Young, G.A., Elias, R.J., and Dobrzanski, E.P. 2003. The world’s biggest trilobite—Isotelus rex new species from the Upper Ordovician of Northern Manitoba, Canada. Journal of Paleontology 77: 99–112.
  • Schmidt−Nielsen, K. 1984. Scaling. Why is Animal Size So Important? 241 pp. Cambridge University Press, Cambridge.
  • Seilacher, A. 1970. Cruziana stratigraphy of “non−fossiliferous” Palaeozoic sandstones. In: T.P. Crimes and J.C. Harper (eds.), Trace Fossils. Geological Journal Special Issue 3: 447–476. Seel House Press, Liverpool.
  • Sekiguchi, K., Yamamichi, Y., Seshimo, H., and Sugita, H. 1988. Normal development. In: K. Sekiguchi (ed.), Biology of Horseshoe Crabs, 133–224, Science House Co., Ltd, Tokyo.
  • Shuster, C.N. Jr. 1982. A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae. ln: J. Bonaventura, C. Bonaventura, and S. Tesh (eds.), Physiology and Biology of Horseshoe Crabs: Studies on Normal and Environmentally Stressed Animals. Progress in Clinical and Biological Research 81: 1–52. Alan R. Liss, Inc., New York.
  • Stachowicz, J.J. and Hay, M.E. 2000. Geographic variation in camouflage specialization by a decorator crab. American Naturalist 156: 59–71.
  • Størmer, L. 1939. Studies on trilobite morphology. Part 1. The thoracic appendages and their phylogenetic significance. Norsk Geologisk Tidsskrift 19: 143–273.
  • Taylor, E.W. 1998. Gills of water−breathers: structures with multiple functions. In: E.R. Weibel, C.R. Taylor, and L. Bolis (eds.), Principles of Animal Design. The Optimization and Symmorphosis Debate, 186–194. Cambridge University Press, Cambridge.
  • Whittington, H.B. 1971. Redescription of Marrella splendens (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia. Geological Survey of Canada Bulletin 209: 1–24.
  • Whittington, H.B. 1975. Trilobites with appendages from the Middle Cambrian, Burgess Shale, British Columbia. Fossils and Strata 4: 97–136.
  • Whittington, H.B. 1980. Exoskeleton, moult stage, appendage morphology, and habits of the Middle Cambrian trilobite Olenoides serratus. Palaeontology 23: 171–204.
  • Whittington, H.B. 1985. Tegopelte gigas, a second soft−bodies trilobite from the Burgess Shale, Middle Cambrian, British Columbia. Journal of Paleontology 59: 1251–1274.
  • Yamasaki, T., Makioka, T., and Saito, J. 1988. Morphology. In: K. Sekiguchi (ed.), Biology of Horseshoe Crabs, 69–132. Science House Co., Ltd, Tokyo.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1aa491a1-5329-4c7f-b077-7bbc5a93dd8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.