PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 19 | 1 |

Tytuł artykułu

Different glyphosate phytotoxicity of seeds and seedlings of selected plant species

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to compare the physiological responses of six plant species (popular crops or plants recommended as indicators of soil pollution) to a wide range of glyphosate concentrations (0, 1, 3, 7, 10, 40, 80, 120, 180, 240, 400, 750, 1,000, 1,500, 1,700 and 2,000 μM). Percent germination, root length, seedling dry mass and myo-inositol content, as well as seedling leachate electroconductivity were determined in Lepidium sativum, Sinapis alba, Sorghum saccharatum, Brassica napus, Lupinus luteus and Avena sativa. Percent seed germination, seedling dry mass and electroconductivity of seedling leachates were not clearly affected by the herbicide and could not be used as indicators of its phytotoxicity. An metabolite induced by abiotic stresses in many plants, myo-Inositol, was very strongly stimulated by glyphosate at doses above 10 or 40 μM, depending on plant species. The sensitivity of analyzed plants to glyphosate, as manifested by root length, differed clearly. In Avena sativa the relationship between root length and glyphosate concentration was fairly linear over a wide range of herbicide doses (up to 240-400 μM). The most distinct drop in root growth at low herbicide doses was visible in Sorghum saccharatum. The results show that a mild stress affecting root length may not clearly modify seedling myo-inositol levels, that respond distinctly to stronger stresses. Not all indicator plants are equally suitable for analysis of biological activity of glyphosate residues. Sorghum saccharatum seems particularly sensitive.

Wydawca

-

Rocznik

Tom

19

Numer

1

Opis fizyczny

p.123-129,fig.,ref.

Twórcy

  • University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
autor

Bibliografia

  • 1. MONSANTO http://www.monsanto.com/monsanto/content/ products/productivity/roundup/gly_halflife_bkg.pdf , 2005.
  • 2. MAMY L., BARRIUSO E. Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61, 844, 2005.
  • 3. ARAUJO A.S.F., MONTEIRO R.T.R., ABARKELI R.B. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52, 799, 2003.
  • 4. GLUSCZAK L., MIRON DOS SANTOS M., MORAES B.S., SIMOES R.R., SCHETINGER M.R.C., MORSCH V.M., LORO V.L. Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comparative Biochemistry and Physiology Part C. Toxicol. Pharmacol. 146, 519, 2007.
  • 5. U.S. EPA. U.S. Environmental Protection Agency Registration Eligibility Decision (RED) Glyphosate. EPA- 738-R-93-014. Washington, DC:U.S. Environmental Protection Agency 1993.
  • 6. CARLISLE S.M., TREVORS J.T. Glyphosate in the environment. Water, Air, Soil Poll. 39, 409, 1988.
  • 7. READE J., COBB A.H. Herbicides: Modes of Action and Metabolism. Weed Management Handbook (9th Edition) (ed), Naylor, R., Blackwell Publications. Chapter 8, 134, 2002.
  • 8. WHO Glyphosate, Environmental Health Criteria 159, 1, 2003.
  • 9. WHO. International Programme on Chemical Safety. Glyphosate. Environmental Health Criteria 159. Geneva: World Health Organization. 1994.
  • 10. TYLER M., WILLAMS C. Mass frog morality at two localities in South Australia. Trans R Soc South Australia 120, 179, 1996.
  • 11. LAJMANOVICH R.C., SANDOVAL M.T., PELTZER P.M. Induction of Mortality and Malformation in Scinax nasicus Tadpoles Exposed to Glyphosate Formulations. Bull. Environ. Contam. Toxicol. 70, 612, 2003.
  • 12. ENNETT A.C., SHAW D.R. Effect of preharvest desiccants on group IV Glycine max seed viability. Weed Sci. 48, 426, 2000.
  • 13. HAIDAR M.A., SIDAHMED M.M., DARWISH R., LAFTA A. Selective control of Orobanche ramosa in potato with rimsulfuron and sub-lethal doses of glyphosate. Crop Prot. 24, (8), 743, 2005.
  • 14. YASUOR H., RIOV J., MARCH B.R. Glyphosate-induced male sterility in glyphosate-resistant cotton (Gossypium hirsutum L.) is associated with inhibition of anther dehiscence and reduced pollen viability. Crop Prot. 26, (3), 363, 2007.
  • 15. CLAY P.A., GRIFFIN J.L. Weed seed production and seedling emergence responses to late-season glyphosate applications. Weed Sci. 48, 481, 2000.
  • 16. HORNSBY A.G., WAUCHOPE R.D., HERNER A.E. Pesticide properties in the environment. Springer-Verlag, New York pp. 52, 1996.
  • 17. ISTA. International rules for seed testing. Seed Sci. Tech., Suplement 27, 1, 1999.
  • 18. PIOTROWICZ-CIEŚLAK A.I. Changes in soluble carbohydrates in yellow lupin seed under prolonged storage. Seed Sci. Tech. 33, 141, 2005.
  • 19. MARŜALEK B., BLAHA L. Comparison of 17 biotests for detection of cyanobacterial toxicity. Environ. Toxicol. 19 (4), 310, 2004.
  • 20. MARČIULIONIENĖ D., LUKŠIENĖ B.,D. KIPONAS, MAKSIMOV G. DARGINAVIČIENĖ J., GAVELIENĖ V. Effects of 137Cs and 90Sr on the plant Lepidium sativum L. growth peculiarities. Ekologija 53, (1), 65, 2007.
  • 21. MOVRIN M., MAYSINGER D. Biologically active Nmannich bases of isatin-3-(phenyl)-imines. Pharmazie 34, (9), 535, 1979.
  • 22. READE J., COBB A.H. Herbicides: Modes of Action and Metabolism. In: Weed Management Handbook (9th Edition), Naylor R. (ed), Blackwell Publications. Chapter 8, pp. 134, 2002.
  • 23. SOPIŃSKA M., GROCHOWA A., NIEZGODA J. Wpływ wod zanieczyszczonych herbicydem Roundup na organizm ryb. Medycyna Weterynaryjna, 56, 593, 2000 [In Polish].
  • 24. TORRES A.C., NASCIMENTO W.M., PAIVA S.A.V., DE ARGAO F.A.S. Bioassay for detection of transgenic soybean seeds tolerance to glyphosate. Pesq. Agropec. Bras. 38, (9), 1053, 2003.
  • 25. KOHATA K, YAMAUCHI Y., UJIHARA T., HORIE H. Growth inhibitory activity of tea-seed saponins and glyphosate to weed seedlings. JARQ 38, (4), 2004.
  • 26. GROSSBARD E. ATKINSON D. The Herbicide Glyphosate. London: Butterworths, pp. 490, 1985.
  • 27. PRAŠIL I., ZAMEĈNIK J. The use of a conductivity measurement method for assessing freezing injury I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environ. Exp. Bot. 40, (1), 1, 1998.
  • 28. MERCHANT A., TAUSZ M., ARNDT S., ADAMS M. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell Environ. 29, (11), 2017, 2006.
  • 29. NELSON D.E., RAMMESMAYER G., BOHNERT H. Regulation of cell specific inositol metabolism and transport in plant salinity tolerance. The Plant Cell 10, 753, 1998.
  • 30. ADOMAS B., PIOTROWICZ-CIEŚLAK A.I. Amino acid composition, hemicellulose and soluble sugars content in narrow-leaved lupin seeds (Lupinus angustifolius L.) under the effect of Reglone Turbo 200 SL. EJPAU, 7 (2), 1, 2004.
  • 31. DEGUCHI M, KOSMITA Y, GAO M, TAO R, TETSUMURA T, YAMAKI S, KANAYAMA Y. Engineered sorbitol accumulation induces dwarfism in Japanese persimmon. J. Plant Physiol. 161, (10), 1177, 2004.
  • 32. WOOD M., STANWAY A.P. Myo-inositol catabolism by Rhizobium in soil: HPLC and enzymatic studies. Soil Biol. Bioch. 33, (3), 375, 2001

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-19820586-8cd8-49da-ad1c-9aa3322d5583
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.