PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2008 | 59 |

Tytuł artykułu

Effect of salinity stress on growth and macroelements uptake of four tree species

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Woody plants grown near the roads are force-fed by salt and this has negative effect on their growth and decorative value. The aim of the presented study was to investigate the effects of salinity on growth and nutrient composition of four trees species often planted along the roads and streets in Poland. Two years old seedlings (bare root) of four tree species: Acer negundo, A. platanoides, Quercus robur and Tilia cordata were potted and grown outside under four soil salinity levels maintained by drenching plants with tap water containing 0.25, 0.5, 1.5, and 3.3g NaCl/L H2O. Plant height, soil samples for electrical conductivity (EC) and pH determination as well as leaf samples for macroelements (N, P, K, Ca, Mg) content evaluation were collected after each growing season of two years of experiment. Electrical conductivity of the growing medium varied insignificantly between species, but salt concentration in the growing medium was distinctly higher in the upper than in the bottom part. Soil salinity had strong but variable effect on plant growth during the experiment. Only Acer negundo growth was not affected even by the highest concentration of NaCl solution. With increasing salinity of growing medium more Na+ was taken by all species but the biggest amount of sodium ions was accumulated in the leaves of Tilia cordata, while the lowest in Acer negundo. Than potassium ions content decreased with increasing medium salinity only in the leaves of Quercus robur and Tilia cordata. In the leaves of Acer platanoides and Tilia cordata calcium concentration was decreased at increased salinity, in two other tested species amount of Ca2+ in the leaves was elevated. The main conclusion that can be drown is that Acer negundo is highly tolerant to salinity stress while Acer platanoides was the most sensitive among tested species.

Wydawca

-

Czasopismo

Rocznik

Tom

59

Opis fizyczny

p.23-29,ref.

Twórcy

autor
  • Research Institute of Pomology and Floriculture, 18 Pomologiczna street, 96-100 Skierniewice, Poland
autor

Bibliografia

  • Alam S., Imamul Huq S.M., Kawai S., Islam A. 2002. Effects of applying calcium salts to costal saline soils on growth andmineral nutrition of rice varieties. Journal of Plant Nutrition 25(3): 561–576.
  • Bohenert H.J., Jensen R.G. 1996. Metabolic engineering for increasedsalt tolerance: the next step. Australian Journal of Plant Physiology 23: 661–667.
  • Borowski J., Latocha P. 2006. Dobór drzew i krzewów do warunków przyulicznych Warszawy i miast centralnej Polski. Rocznik Dendrologiczny 54: 83–93.
  • Francois L.E. 1982. Salt tolerance of eight ornamental species. Journal of American Societies Horticulture Science 107: 66–68.
  • Francois L.E., Clark R.A. 1978. Salt tolerance of ornamental shrubs, trees andiceplant. Journal of American Societies Horticulture Science 103: 280–283.
  • Grattan S.R., Grieve C.M. 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulture 78: 127–157.
  • Greenway H., Munns R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31: 149–190.
  • Howes Keiffer C., Ungar I.A. 1997. The effect of density andsalinity on shoot biomass andion accumulation in five inlandhalophytic species. Canadian Journal of Botany 75: 96–107.
  • Kaya C., Ak B.E., Higgs D. 2003. Response of salt-stressedstrawberry plants to supplementary calcium nitrate and/or potassium nitrate. Journal of Plant Nutrition 26: 543–560.
  • Lauchli A., Epstein E. 1990. Plant responses to saline and sodic conditions. In: Agricultural Salinity Assessment andManagement: Tanij K.K Ed., ASCE, New York: 113–137.
  • Loupassaki M.H., Chartzoulakis K.S., Digalaki N.B., Androulakis I.I. 2002. Effect on salt stress on concentration of nitrogen, phosphorus, potassium, calcium magnesium, andsod ium in leaves, shoots, androots of six olive cultivars. Journal of Plant Nutrition 11: 2457–2482.
  • Marosz A. 2001. Wpływ zasolenia gleby na wzrost i pokrój krzewów okrywowych. Rocznik Dendrologiczny 49: 213–225.
  • Marosz A. 2004. Effect of soil salinity on nutrient uptake, growth andd ecorative value of four ground cover shrubs. Journal of Plant Nutrition 27(6): 977–989.
  • Mohaieb R.E.A., Saneokab H., Ito J., Fujita K. 2001. Characterization of salt tolerance in tomato plant in terms of photosynthesis andwater relations. Soil Science andPlant Nutrition 47(2): 377–385.
  • Rengel Z. 1992. The role of calcium in salt toxicity. Plant Cell Environment. 15: 625–632.
  • Sehmer L., Alaoui-Sosse B., Dizengremel P. 1995. Effect of salt stress on growth andon detoxifying pathway of pendunculate oak. Journal of Plant Physiology 147: 144–151.
  • Shaybany B., KashiradA. 1978. Effect of NaCl on growth andmineral composition of Acacia saligana in sandculture. Journal of American Societies Horticulture Science 103: 823–826.
  • Silberbush M. 2001. Potassium influx to roots of two sorghum genotypes grown under saline conditions. Journal of Plant Nutrition 22: 1035–1045.
  • Skimina C. 1980. Salt tolerance of ornamentals. Comb. Proc. IPPS. 30: 113–118.
  • TowsendA.M. 1980 Response of selectedtree species to sodium chloride. Journal of American Societies Horticulture Science 105(6): 878–883.
  • Yeo A.R. 1983. Salinity resistance: Physiologies and prices. Physiologia Plantarum 58: 214–222.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1825ebfd-c46a-4e63-a22d-2066327c4366
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.