PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 49 | 1 |

Tytuł artykułu

Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Root growth and thickening plays a key role in the final productivity and even the quality of storage roots in root crops. This study was conducted to identify and map quantitative trait loci (QTLs) affecting root morphological traits in Brassica rapa by using molecular markers. An F₂ population was developed from a cross between Chinese cabbage (Brassica rapa ssp. chinensis) and turnip (B. rapa ssp. rapifera), which differed greatly in root characters. A genetic map covering 1837.1 cM, with 192 marker loci and 11 linkage groups, was constructed by using this F₂ population. The F₃ families derived from F₂ plants were grown in the field and evaluated for taproot traits (thickness, length, and weight). QTL analysis via simple interval mapping detected 18 QTLs for the 3 root traits, including 7 QTLs for taproot thickness, 5 QTLs for taproot length, and 6 QTLs for taproot weight. Individually, the QTLs accounted for 8.4-27.4% of the phenotypic variation. The 2 major QTLs, qTRT4b for taproot thickness and qTRW4 for taproot weight, explained 27.4% and 24.8% of the total phenotypic variance, respectively. The QTLs for root traits, firstly detected in Brassica crops, may provide a basis for marker-assisted selection to improve productivity in root-crop breeding.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

49

Numer

1

Opis fizyczny

p.23-31,fig.,ref.

Twórcy

autor
  • Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Department of Horticulture, Zhejiang University, Hangzhou, P.R.China
autor
  • Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Department of Horticulture, Zhejiang University, Hangzhou, P.R.China
autor
  • Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Department of Horticulture, Zhejiang University, Hangzhou, P.R.China
autor
  • Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Department of Horticulture, Zhejiang University, Hangzhou, P.R.China
autor
  • Institute of National Vegetable Science, Beijing, P.R. China

Bibliografia

  • Ajisaka H, Kuginuki Y, Yui S, Enomoto S, Hirai M, 2001. Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp pekinensis syn. campestris L.) using bulked segregant analysis: a QTL controlling extreme late bolting in Chinese cabbage. Euphytica 118: 75-81.
  • Beebe SE, Rojas-Pierce M, Yan XL, Blair MW, Pedraza F, Munoz F, et al. 2006. Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46: 413-423.
  • Chen H, 2001. Atlas of the traditional vegetables in China. Zhejiang Science and Technology Publishing House, China: 123-124.
  • Gupta AK, Singh J, Kaur N, 2001. Sink development, sucrose metabolising enzymes and carbohydrate status in turnip (Brassica rapa L.). Acta Physiol Plant 23: 31-36.
  • Iwata H, Niikura S, Matsuura S, Takano Y, Ukai Y, 2004. Genetic control of root shape at different growth stages in radish (Raphanus sativus L.). Breeding Sci 54: 117-124.
  • Johnson WC, Jackson LE, Ochoa O, van Wijk R, Peleman J, Clair DA, Michelmore RW, 2000. Lettuce, a shallow- rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor Appl Genet 101: 1066-1073.
  • Kosambi DD, 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172-175.
  • Lander ES, Green P, Abrahamson J, Bavlow A, Daly MJ, Lincoln SE, Newburg L, 1987. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.
  • Lincoln SE, Daly MJ, Lander ES, 1992. Construction of genetic maps with MAPMAKER/EXP 3.0. Whitehead Inst Tech Rep Whitehead Inst., Cambridge.
  • Lynch JP, van Beem JJ, 1993. Growth and architecture of seedling roots of common bean genotypes. Crop Sci 33: 1253-1257.
  • Lu G, Zhuang XY, 2004. Changes of sink activity and soluble protein during tap-root thickening. J Zhejiang University 30: 39-43 (in Chinese with English Abstract).
  • Malamy JE, 2005. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28: 67-77.
  • Manickavelu A, Nadarajan N, Ganesh S, Gnanamalar RP, Chandrababu R, 2006. Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50: 121-138.
  • Nelson JC, 1997. QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3: 239-245.
  • Nishioka M, Tamura K, Hayashi M, Fujimori Y, Ohkawa Y, Kuginuki Y, Harada K, 2005. Mapping of QTLs for bolting time in Brassica rapa (syn. campestris) under different environmental conditions. Breeding Sci 55: 127-133.
  • Nozaki T, Kumazaki A, Koba T, Ishikawa K, Ikehashi H, 1997. Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brassica campestris L. Euphytica 95: 115-123.
  • Paterson AH, Lander ES, Had JD, Paterson S, Lincoln SE, Tanksley SD, 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721-726.
  • Paterson AH, Damon S, Hewitt J, Zamir D, Rabinowitch HD, Lincoln SE, 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127: 181-197.
  • Price AH, Steele KA, Moore BJ, Barraclough PB, Clark LJ, 2000. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100: 49-56.
  • Reid JB, English JM, 2000. Potential yield in carrots (Daucits carota L.): theory, test and an application. Annals of Botany 85: 593-605.
  • Robertson BM, Hall AE, Foster KW, 1985. A field technique for screening for genotypie differences in root growth. Crop Sci 25: 1084-1090.
  • Rouhier H, Usuda H, 2001. Spatial and temporal distribution of sucrose synthase in the radish hypocotyl in relation to thickening growth. Plant Cell Physiol 42: 583-593.
  • SAS Institute, 1989. SAS/STAT user's guide, version 6, 4th edn. SAS Institute, Cary, N.C.
  • Shibaike H, 1998. Molecular genetic mapping and plant evolutionary biology. J Plant Res 111: 383-388.
  • Song KM, Slocum MK, Osborn TC, 1995. Molecular marker analysis of genes encoding morphological variation in Brassica rapa (syn. campestris). Theor Appl Genet 90: 1-10.
  • Steele KA, Price AH, Shashidhar HE, Witcombe JR, 2006. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112: 208-221.
  • Takuno S, Kawahara T, Ohnishi O, 2007. Phylogenetic relationships among cultivated types of Brassica rapa L. em. Metag. As revealed by AFLP analysis. Genet Resour Crop Evol 54: 279-285.
  • Tanhuanpaa P, Schulman A, 2002. Mapping of genes affecting linolenic acid content in Brassica rapa ssp. oleifera. Mol Breed 10: 51-62.
  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, et al. 1995. AFLP: a new technique for DNA finger-printing. Nuci Acids Res 23: 4407-4414.
  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey V, 1990. DNA polymorphisms amplified by arbitrary primer are useful as genetic markers. Nucleic Acids Res 18: 6531-6535.
  • Zobel R, 1986. Rhizogenetics (root genetics) of vegetable crops. HortScience 21: 956-959.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-17f6779f-9710-4bbe-ac85-e1b88ce06078
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.