PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 2 |

Tytuł artykułu

Pleiotropic effect of flavonoid biosynthesis manipulation in transgenic potato plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Three approaches were successfully used to manipulate content of flavonoids in transgenic plants. Overexpressing either the adaptor 14-3-3 protein or genes coding the key enzymes of the flavonoid biosynthesis pathway resulted in a significant increase in the compound content in potato tuber epidermis. The opposite effect was observed in transgenic plants in which these proteins were repressed; this strongly supports the view that the gene construct deiermines transgenic plant feaiures. The most effective construct was, however, the one containing single dihydroflavonol reductase (DFR) gene in sense orientation. In all cases the increase in flavonoid content resulted in the expected enhancement of the antioxidant capacity of tuber extract. At the biochemical level a decrease in the starch content in transgenic plant overexpressing proteins regulating flavonoid biosynthesis was detected. In the case of glucosyl transferase (GT) gene overexpression, the content of phenolic compounds remained at the control level, however, the antioxidant capacity of tuber extracts significantly decreased. The GT plants grew faster glucosylation of flavonoids rather than their quantity which determines transgenic plant features.

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

p.221-228,fig.,ref.

Twórcy

  • Wroclaw University, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
autor

Bibliografia

  • Braun E.L., Matulnik T.J., Dias A.P., Grotewold E. 2001. Transcription factors and metabolic engineering: novel applications for ancient tools. Recent. Adv. Phytochem. 35: 79-109.
  • Campbell J.A., Davies G.J., Bulone V., Henrissat B. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326: 929-939.
  • Deblaere R., Bytebier B., de Greve H., Deboeck F., Schell J., Van Montagu M., Leemans J. 1985. Efficient octopine Ti plasmid-derived vectors for Agroi bacterium-mediated gene transfer to plants. Nucl. Acids Res. 13: 4777-4788.
  • De Jong W.S., De Jong D.M., De Jong H., Kalazich J., Bodis M. 2003. An allele of dihydroflavonol 4-reductase asiociated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theor. Appl. Genet. 107:1375-1383.
  • Di Pietro A., Conseila G., Perez-Victoria J.M., Dayana G., Baubichon-Cortaya H., Trompiera D., Steinfels E. 2002. Moduiation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell. Mol. Life Sci. 59: 307-322.
  • Finnie C., Borch J., Collinge D.B. 1999. 14-3-3 proteins: eukaryotic reguiatory proieins with many func c tions. Plant Mol. Biol. 40: 545-554.
  • Foreman J., Demidchik V., Bothwell, J.H.F., Mylona P., Miedema H., Torres M.A., Linstead P., Costa S., Brownlee C., Jones J.D.G., Davies J.M., Dolan L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446.
  • Fu H., Subramanian R.R., Masters S.C. 2000. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617-647.
  • Grotewold E. 2003. Manipulating the accumulation of phenolics in maize cultured cells using transcription factors. Biochem.l Engin. J., 14: 207-216.
  • Hahlbrock K., Scheel D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 347- 367.
  • Harborne J.B., Wiltiams C.A. 2000. Advances in Favonoid retearch since 1992. Phytochemistry 55: 481-504.
  • Hertog M.G.L., Kromhout D., Aravanis C., Blackburn H., Buzina R., Fidanza F., Giampaoli S., Jansen A., Menotti A., Nedeljkovic S., Pekkarinen M., Simic A.S., Toshima H., Feskens E.J.M., Hollman P.C.H., Katan M.B. 1995. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 155: 381-386.
  • Hertog M.G.L., Hollman P.C.H., Katan M.B. 1992. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands, J. Agric. Food Chem., 40: 2379-2383.
  • Jacobs M., Rubery P.H. 1988. Naturally occurring auxin transport regulators. Science 24: 346-349
  • Keli S.O., Hertog M.G.L., Feskens E.J.M., Kromt hout D. 1996. Flavonoids, antioxidant vitamins and risk of stroke. The Zutphen study. Arch. Intern. Med. 156: 637-642.
  • Krasowska A., Rosiak D., Szkapiak K., Łukaszewicz M. 2000. Chemiluminescence detection of peroxyl radicals and comparison of antioxidant activity of phenolic compounds. Curr. Topics Biophys. 24: 89-95.
  • Krasowska A., Rosiak D., Szkapiak K., Oświęcimska M., Witek S., Łukaszewicz M. 2001. The antioxidant activity of BHT and new phenolic compounds PYA and PPA measured by chemiluminescence. Cell. Mol. Biol. Lett. 6: 71-81.
  • Lim E.-K., Doucet C.J., Li Y., Elias L., Worrall D., Spencer S.P., Ross J., Bowles D.J. 2002. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277: 586-592.
  • Łukaszewicz M., Matysiak-Kata I., Aksamit A., Oszmiański J., Szopa J. 2002. 14-3-3 Protein regulation of the antioxidant capacity of transgenic potato tubers. Plant Sci. 163: 125-130.
  • Łukaszewicz M., Matysiak-Kata I., Skała J., Fecka I., Cisowski W., Szopa J. 2004. Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J. Agric. Food Chem. 52: 1526-1533.
  • Moore B.W., Perez V.J. 1967. Specific acidic proteins of the nervous system. In: Physiological and Biochemical Aspects of Nervous Integration. Prentice-Hall ed. (Calson, F.D., ed.), pp. 343-359.
  • Murphy A., Peer W.A., Taiz L. 2000. Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211: 315-324.
  • Nugroho L.H., Verberne M.C., Verpoorte R. 2002. Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiol. Biochem. 40: 755-760.
  • Overmyer K., Brosche M., Jaakko Kangasjarvi J. 2003. Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8: 335-342.
  • Rice-Evans A.C., Miller N.J., Paganga G. 1997. Antioxidant properties of phenolic compounds. New Trend Plant Sci. Rev. 2: 152-159.
  • Roberts M. R. 2000. Regulatory 14-3-3 protein-protein inieraciions in plant cells. Curr. Opin. Plant Biol. 3: 400-405.
  • Rorat T., Grygorowicz W.J., Berbezy P., Irzykowski W. 1998. Isolation and expression of cold specific genes in poiato (Solanum sogarandinum). Plant Sci. 133: 57-67.
  • Shintani D., DellaPenna D. 1998 Elevating the Vitamin E content of plants through metabolic engineering. Science 282: 2098-2100.
  • Stobiecki M., Matysiak-Kata I., Frański R., Skała J., Szopa J. 2003. Monitoring changes in anthocyanin and steroid alkaloid glycoside content in lines of transgenic potato plants using liquid chromatography/mass spectrometry. Phytochemistry 62: 959-969.
  • Sun A.Y., Simonyi A., Sun G.Y. 2002. The “french paradox” and beyond: neuroprotective effects of polyphenols. Free Radical Biol. Med. 32: 314.318.
  • Szopa J. 2002. Transgenic 14-3-3 isoforms in plants: the metabolite profiling of repressed 14-3-3 protein synthesis in transgenic potato plants. Biochem. Soc. Trans. 30: 405-410.
  • Szopa J., Łukaszewicz M., Korobczak A., Aksamit A., Kwiatkowska D. 2003. Structural organisation, expression, and promoter analysis of a 16R isoform of 14-3-3 protein gene from potato. Plant Pysiol. Biochem. 41: 417-423.
  • Szopa J., Wróbel M., Matysiak-Kata I., Świędrych A. 2001. The metabolic profile of the 14-3-3 repressed transgenic potato tubers. Plant Sci. 161: 1075-1082.
  • Woo H-H., Faull K.F., Hirsch A.M., Hawes M.C. 2003. Altered Life Cycle in Arabidopsis Plants Expressing PsUGT1, a UDP-Glucuronosyltransferase-Encoding Gene from Pea. Plant Physiol. 133: 538-548.
  • Vogt T., Jones P. 2000 Glycosyltransferases in plant natural product synthesis - characterization of a supergene family. Trends Plant Sci. 5: 380-386.
  • Verpoorte R., van der Heijden R., ten Hoopen H.J.G., Memelink J. 1999. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol. Lett. 21: 467-479.
  • Verhoeyen M.E., Bovy A., Collins G., Muir S., Robinson S., de Vos C.H.R., Colliver S. 2002. Increasing antioxidant levels in tomatoes through modifcation of the favonoid biosynthetic pathway. J. Exp. Bot. 53: 2099-2106.
  • Wilczyński G., Kulma A., Szopa J. 1998. The expression of 14-3-3 isoforms in potato is developmentaly regulated. J. Plant Physiol. 153: 118-126.
  • Weisshaar B., Jenkins G.I. 1998. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251-257.
  • Ye X., Al-Babili S., Kloti A., Zhang J., Lucca P., Beyer P., Potrykus I. 2000. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305.
  • Zhang H., Wang J., Goodman H. M. 1997a. An Arabii dopsis gene encoding a putative 14-3-3-interacting protein, caffeic acid/5-hydroxyferulic acid O-methyltransferase. Biochim. Biophys. Acta 1353: 199-202.
  • Zhang H., Wang J., Nickel U., Allen R. D., Goodman H.M. 1997b. Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol. Biol. 34: 967-971.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-17cc3704-ff99-4617-8a17-395eaf282063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.