PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 57 | 2 |

Tytuł artykułu

Effect of biofilm formation by Pseudomonas aeruginosa on gas permeability of food wrapping foils

Treść / Zawartość

Warianty tytułu

PL
Wplyw tworzenia biofilmu przez Pseudomonas aeruginosa na przepuszczalnosc gazow przez folie spozywcze

Języki publikacji

EN

Abstrakty

EN
The natural precedence of microorganisms growth on the damp surfaces is the formation of biofilm. The arising biolayer, stabilized by extracellular substances, is becoming hard to remove biological structure, the enzymatic activity of which can lead to violation of the packaging, and consequently to acceleration of the process of food spoilage. The microorganisms of Pseudomonas species are widely spread in food products’ environment. In order to perform the analysis three types of food wrapping foils from polyamide – polyethylene (PA/PE), which were kept in Pseudomonas culture, were used in the study. Two strains were used – the standard ATCC 15442 (WZ) and the strain isolated from pork-beef minced meat (MB) airtight packaged. All cultures were run at the temperatures 4°C and 20°C. It was reported that on all types of food wrapping foils biofilms were developed, which were formed by Ps. aeruginosa. The biolayers developed decreased permeability of foils, which was shown by restriction of permeability for gases. The changes of foils properties analysed here were most of all dependent on the type of the foil.
PL
Celem niniejszej pracy było określenie wpływu rozwijającego się biofilmu bakteryjnego na przepuszczalność gazów przez folie spożywcze (PA/PE i EVOH) przy wykorzystaniu OX-TRAN 2/20 ML. W doświadczeniu wykorzystano szczepy Ps. aeruginosa – wyizolowane z prób mięsa mielonego hermetycznie pakowanego oraz szczepu wzorcowego ATCC. We wszystkich wariantach doświadczenia stwierdzono tworzenie biofilmu przez bakterie. Intensywność kolonizacji powierzchni folii przez testowane szczepy była największa w pierwszych trzech dniach hodowli (tab. 2, 3). Nie stwierdzono korelacji pomiędzy rodzajem folii, a intensywnością tworzonej biofilmu (rys. 2, 3). Ustalono, że powstały biofilm wpływa na podniesienie barierowości wszystkich testowanych folii spożywczych.

Wydawca

-

Rocznik

Tom

57

Numer

2

Opis fizyczny

p.167-172,fig.,ref.

Twórcy

  • Agricultural University of Szczecin, Papieza Pawla VI 3, 71-459 Szczecin, Poland
autor
autor

Bibliografia

  • 1. Al-Tahan R.A., Sandrin T.R., Bodour A.A., Maier R.M., Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties a interaction with hydrophobic substrates. Appl. Environ. Microbiol., 2000, 66, 3262–3268.
  • 2. Auerbach I.D., Sorensen C., Hansma H.G., Holden P.A., Physical morphology and surface properties of unsaturated Pseudomonas putida biofilm. J. Bacteriol., 2000, 183, 3809–3815.
  • 3. Bartkowiak A., Żakowska Z., Lisiecki S., Szumigaj J., Permeability for oxygen and susceptibility to microorganisms’ colonisation of biodegradable and biodecomposing foils expected to be used in food industry. 2004, in: Polymer Materials Pomerania-Plast, Wyd. PS, pp. 53–55 (in Polish).
  • 4. Costerton J.W., Stewart P.S., Greenberg E.P., Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284, 1318–1322.
  • 5. Czerniawski B., Stasiek J., The review of production systems of multi – layer foils. Plastics Rev., 2001, Sept., 30–44.
  • 6. Daveley M.E., O’Toole G.A., Microbial biofilms: from ecologyto molecular genetics. Microbiol. Molecul. Biol. Rev., 2000, 64, 847–867.
  • 7. Defoirdt T., Boon N., Bossier P., Verstraete W., Disruption of bacterial quorum sensing: am unexplored strategy to fight infection in aquaculture. Aquaculture, 2004, 240, 69–88.
  • 8. Doyle R.J., Rosenberg M., Microbial Cell Surface Hydrophobicity, 1993, American Society for Microbiology, Washington D.C., pp. 10–14.
  • 9. Fik M., Leszczyńska-Fik A., The influence of cooling preservation on the microbiological quality of vacum-packed pork minced meat. Przem. Spoż., 1997, 10, 40–42 (in Polish).
  • 10. Gilbert P., McBain A.J., Rickard A.H., Formation of microbial biofilm in hygienic situations: a problem of control. Inter. Biodeter. Biodegr., 2003, 51, 245–248.
  • 11. Herman D.C., Zang Y., Miller R.M., Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl. Environ. Microbiol., 1997, 63, 3622–3627.
  • 12. ISO 2556:1974, Plastics – determination of gas transmission rate of films and thin sheets under atmospheric pressure – Manometric methods.
  • 13. Jay J.M., Loessner M.J., Golden D.A., Taxonomy, role, and significance of microorganisms in food. 2005, in: Modern Food Microbiology (ed. D.R. Heldemann). Springer Inc., NY, USA, pp. 13–37.
  • 14. Kumar G.S., Jagannadham M.V., Ray M.K., Low-temperature--induced changes in composition and fluidy of lipopolysaccharrides in the Antarctic psychrotrophic bacterium Pseudomonas syringae. J. Bacteriol., 2002, 184, 6746–6749.
  • 15. Lisiecki S., Permeability of oxygen and mechanical properties of PA/PE laminates. 2003, in: Materials of the 36th Conference of the Polish Academy of Sciences “The quality of Polish food shortly before the Poland integration with the European Union”. Elma Wroclaw, 10–11 September 2003, p. 197.
  • 16. Magrex-Debar E.L., Lemoine J., Gelle M.P., Jacquelin L.F, Choisy C., Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int. J. Food Microbiol., 2000, 55, 239– 243.
  • 17. Michniewicz J., Packing and the quality of food products. 1999, in: Materials of the5th Conference of Polish Society of Food Technologists “Transport of food – packages in food transport”, 3–5 November 1999, Wyd. Nauk. PTTŻ, Kiekrz k/Poznania, pp. 18–25.
  • 18. Polish Norm: PN-85/A-82051, Delicatessen products. Semi-finished and finished articles. Microbiological analyses (in Polish).
  • 19. Poulsen L.V., Microbial biofilm in food processing. Lebensmittel Wiss. Technol., 1999, 32, 321–326.
  • 20. Sharma M., Anand S.K., Characterization of constitutive microflora of biofilm dairy processing lines. Food Microbiol., 2002a, 19, 627–636.
  • 21. Sharma M., Anand S.K., Biofilm evaluation as an essential component of HACCP for food/dairy processing industry – a case. Food Control, 2002b, 13, 469–477.
  • 22. Szabo Z., Investigation of mechanism of cell membrane-active cyclic lipodepsipeptides compounds. Acta Pharm. Hung., 2003, 73, 249–56.
  • 23. Tuleva B.K., Ivanov G.R., Christova N.E., Biosurfactant production by new Pseudomonas putida strain. Z. Naturforsch., 2002, 57c, 356–360.
  • 24. Van der Mei H.C., De Vries J., Busscher H.J., Hydrophobic and electrostatic cell surface properties of thermophilic dairy streptococci. Appl. Environ. Microbiol., 1993, 59, 4305–4312.
  • 25. Webb J.S., Givskov M., Kjelleberg S., Bacterial biofilm: adventures in multicellularity. Cur. Opinion Microbiol., 2003, 6, 578–585.
  • 26. Wolska K., Pogorzelska S., Fijol E., Jakubczak A., Bukowski K., Influence of growth conditions on cell surface hydrophobicity of Pseudomonas aeruginosa. Med. Dośw. Mikrobiol., 2002, 54, 56–61.
  • 27. Xu K.D., Franklin M.J., Park C.H., McFeters G.A., Stewart P.S., Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol. Lett., 2001, 199, 67–71.
  • 28. Xu K.D, Stewart P.S., Xia F., Ching-Tsan H., McFeters G.A., Spatial physiological heterogenity in Pseudomonas aeruginosa. Biofilm is determined by oxygen availability. Appl. Environ. Microbiol., 1998, 64, 4035–4039.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-177722da-c891-494f-9bc3-e3798dd43bb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.