PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2008 | 54 | 3 |

Tytuł artykułu

Wplyw zwiazkow biologicznie czynnych zawartych w roslinach leczniczych na receptory osrodkowego ukladu nerwowego - podloze potencjalnych mechanizmow interakcji z lekami syntetycznymi. Czesc I

Warianty tytułu

EN
The influence of biologically active compounds of medicinal plants on the central nervous system receptors - basis of potential interaction with synthetic drugs mechanisms. Part I

Języki publikacji

PL

Abstrakty

PL
Rozwój badań nad molekularnymi mechanizmami fitoterapii pozwala na coraz lepszą identyfikację mechanizmów neurochemicznych prowadzących do występowania interakcji pomiędzy lekami roślinnymi a syntetycznymi na poziomie receptorów ośrodkowego układu nerwowego (OUN). W naszej pracy podjęliśmy próbę podsumowania oraz krytycznej analizy doniesień o tego rodzaju interakcjach pomiędzy wybranymi roślinami leczniczymi: Ginkgo biloba (Ginkgo), Hypericum perforatum (St. John’s Worth) (część I cyklu artykułów), Valeriana officinalis (Valerian) oraz Panax ginseng (Ginseng) (część II) a lekami syntetycznymi (np. benzodiazepiny i barbiturany, opioidy) na poziomie receptorów OUN (między innymi: receptorów GABA-ergicznych, glutaminianergicznych, dopaminergicznych, adenozynowych) zarówno wynikających z badań in vitro, jak i z in vivo. Analiza danych bibliograficznych wykazała, że ginkgolidy oraz bilobalid wiążą się z receptorami GABA-ergicznymi (jako antagoniści niekompetycyjni), a także skracają czas snu indukowanego heksobarbitalem oraz uretanem. Inne badania pozwoliły na stwierdzenie, że hiperforyna, hiperycyna oraz amentoflawon wpływają na aktywność różnych receptorów ośrodkowego układu nerwowego (NMDA, DA, GABA, 5-HT). Kilka badań wykazało wiązanie kwasu walerenowego do receptorów GABA, co potwierdziło, że ekstrakty Valeriane radix mogą powodować interakcje z anestetykami, anksjolitykami oraz lekami uspokajającymi i nasennymi oraz mogą nasilać sedatywny efekt działania tych leków. Ponadto stwierdzono, że ginsenozydy mogą powodować interakcje z morfiną oraz apomorfiną na poziomie receptorów dopaminergicznych. Wydaje się, że w celu wyjaśnienia dokładnej natury receptorowych mechanizmów interakcji pomiędzy lekami roślinnymi a syntetycznymi konieczne jest przeprowadzenie dalszych badań neurochemicznych i farmakologicznych.
EN
Advances in understanding of molecular mechanisms in phytotherapy allow the better identification of neurochemical mechanisms leading to interactions between herbal medicines and synthetic drugs on the receptors level in the central nervous system (CNS). We have summarised the possible interactions between selected medicinal plants: Ginkgo biloba (Ginkgo), Hypericum perforatum (St. John’s Worth) (part I of series), Valeriana officinalis (Valerian) oraz Panax ginseng (Ginseng) (part II) and synthetic drugs, i.e. benzodiazepin and barbiturate derivatives as well as opioids – on the receptors of CNS (i.e. γ-aminobutyric acid, glutamate, dopamine, muscarinic, adenosine receptors) from in vitro and animal model studies. The analysis of bibliographical data has shown that ginkgolides and bilobalid bind to GABA receptors (as noncompetitive antagonist) and shortened the time of sleep induced by hexobarbital and urethane. Other studies showed that hyperforin, hypericine and amenthoflawon influence on the activity of different receptors of the central nervous system (NMDA, DA, GABA, 5-HT). Several studies showed binding of valerenic acid to GABA receptors. These results confirmed that valerian may cause a valerian-anesthetic, anxiolytics and sedative drugs interactions and may potentiate the sedative effects of these drugs. Moreover it was shown that ginsenosides may interact with morphine and apomorphine on the dopamine receptor level. In conclusion, imore detailed neurochemical and pharmacological studies are needed to explain the mechanisms of interactions between herbal and synthetic drugs in CNS.

Wydawca

-

Czasopismo

Rocznik

Tom

54

Numer

3

Opis fizyczny

s.113-136,rys.,tab.,bibliogr.

Twórcy

autor
  • Instytut Roslin i Przetworow Zielarskich, ul.Libelta 27, 61-707 Poznan
autor

Bibliografia

  • 1. Ożarowski M. Interakcje pomiędzy lekami roślinnymi i składnikami diety zawierającymi surowce roślinne oraz lekami syntetycznymi dotyczące ośrodkowego układu nerwowego. Rozprawa doktorska. Uniwersytet Medyczna im. Karola Marcinkowskiego, Wydział Farmaceutyczny, Instytut Roślin i Przetworów Zielarskich, Poznań 2007.
  • 2. Costa LG, Steardo L, Cuomo V. Structural effects and neurofunctional sequelae of developmental exposure to psychoterapeutic drugs: experimental and clinical aspects. Pharmacological Rev 2004; 56(1):103-47.
  • 3. Spinella M. The psychopharmacology of herbal medicine. Plant drugs that alter mind, brain, and behavior. The MIT Press, Cambridge, Massachusetts, London 2001.
  • 4. Muszyński J. Surowce zawierające pochodne tropanu. W: Farmakognozja. Zarys nauki o surowcach leczniczych. PZWL, Warszawa 1957:578-84.
  • 5. Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF. A placebo-controled, doubleblind, randomized trial of an extract of Ginkgo biloba for dementia. JAMA 1997; 278:1327-32.
  • 6. Le Bars PL, Kieser M, Itil KZ. A 26-week analysis of a double-blind, placebo-controlled trial of the Ginkgo biloba extract EGb 761 in dementia. Dement Geriatr Cogn Disord 2000; 11:230-7.
  • 7. Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer’s disease. Arch Neurol 1998; 55:1409-15.
  • 8. Witte S, Loew D, Gaus W. Meta-analysis of the efficacy of the acetonic kava-kava extract WS1490 in patients with non-psychotic anxiety disorders. Phytother Res 2005; 19(3):183-8.
  • 9. Pittler MH, Ernst E. Efficacy of kava extract for treating anxiety: systematic review and meta-analysis. J Clin Psychopharmacol 2000; 20(1):84-9.
  • 10. Speroni E, Minghetti A. Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med 1988; 54(6):488-91.
  • 11. Dhawan K, Kumar S, Sharma A. Anti-anxiety studies on extracts of Passiflora incarnata Linneaus. J Ethnopharmacol 2001; 78:165-70.
  • 12. Dhawan K, Kumar S, Sharma A. Anxiolytic activity of aerial and underground parts of Passiflora incarnata. Fitoterapia 2001; 72(8):922-6.
  • 13. Xu Q, Yi LT, Pan Y, Wang X, Li YC, Li JM, Wang CP, Kong LD. Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(3):715-25.
  • 14. Patocka J, Jakl J, Strunecka A. Expectations of biologically active compounds of the genus Magnolia in biomedicine. J Appl Biomed 2006; 4:171-8.
  • 15. Johnston GAR, Hanrahan JR, Chebib M,. Duke RK, Mewett KN. Modulation of ionotropic GABA receptors by natural products of plant origin. Adv Pharmacol 2006; 54:286-316.
  • 16. Wang X, Wang Y, Geng Y, Li F, Zheng C. Isolation and purification of honokiol and magnolol from cortex Magnoliae officinalis by high-speed counter-current chromatography J Chromatography A 2004; 1036(2):171-5.
  • 17. Piao HZ, Jin SA, Chun HS, Lee JC, Kim WK. Neuroprotective effect of wogonin: potential roles of inflammatory cytokines. Arch Pharm Res 2004; 27(9):930-6.
  • 18. Cho J, Lee HK. Wogonin inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion. Biol Pharm Bull. 2004; 27(10):1561-4.
  • 19. Wang H, Hui KM, Chen Y, Xu S, Wong JT, Xue H. Structure-activity relationships of flavonoids, isolated from Scutellaria baicalensis, binding to benzodiazepine site of GABA(A) receptor complex. Planta Med 2002; 68(12):1059-62.
  • 20. Hui KM, Huen MS, Wang HY, Zheng H, Sigel E, Baur R, Ren H, Li ZW, Wong JT, Xue H. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol 2002; 64(9):1415-24.
  • 21. Kasper S, Gastpar M, Müller WE, Volz HP, Dienel A, Kieser M, Möller HJ. Efficacy of St. John‘s wort extract WS 5570 in acute treatment of mild depression: a reanalysis of data from controlled clinical trials. Eur Arch Psychiatry Clin Neurosci 2008; 258(1):59-63.
  • 22. Papakostas GI, Crawford CM, Scalia MJ, Fava M. Timing of clinical improvement and symptom resolution in the treatment of major depressive disorder. A replication of findings with the use of a double-blind, placebocontrolled trial of Hypericum perforatum versus fluoxetine. Neuropsychobioogy 2007; 56(2-3):132-7.
  • 23. ESCOP monographs. The Scientific Foundation for Herbal Medicinal Products. Hypericum perforatum (St. John’s Worth). 2nd ed. The European Scientific Cooperative on Phytotherapy, New York, Stuttgart 2003:257-82.
  • 24. Fleming T. (ed.). Therapeutic Category Index [In:] PDR (Physicians Desk Reference) for Herbal Medicines. 2nd ed. Thomas Medical Economics at Montvale, New Jersey 2000.
  • 25. Wiart C. Ethnopharmacology of Medicinal Plants: Asia and the Pacific. Humana Press 2006.
  • 26. Kim HS, Jang CG, Oh KW, Oh S, Rheu HM, Rhee GS, Seong YH, Park WK. Effects of ginseng total saponin on morphine-induced hyperactivity and conditioned place preference in mice. J Ethnopharmacol 1998a; 60(1):33-42.
  • 27. Kim HC, Shin EJ, Jang CG, Lee MK, Eun JS, Hong JT, Oh KW. Pharmacological action of Panax ginseng on the behavioral toxicities induced by psychotropic agents. Arch Pharm Res 2005; 28(9):995-1001.
  • 28. Kim S, Ahn K, Oh TH, Nah SY, Rhim H. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem Biophys Res Commun 2002; 296(2):247-54.
  • 29. Kim S, Kim T, Ahn K, Park WK, Nah SY, Rhim H. Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem Biophys Res Commun 2004; 323(2):416-24.
  • 30. Dimpfel W, Schober F, Mannel M. Effects of a methanolic extract and a hyperforin-enriched CO2 extract of St. John’s Wort (Hypericum perforatum) on intracerebral field potentials in the freely moving rat (TeleStereo-EEG). Pharmacopsychiatry 1998;31 Suppl. 1:30-5.
  • 31. Cott JM. In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract. Pharmacopsychiatry. 1997;30 Suppl 2:108-12.
  • 32. Gräsel I, Reuter G. Analysis of 6-Hydroxykynurenic Acid in Ginkgo biloba and Ginkgo Preparations. Planta Med 1998; 64:566-70.
  • 33. Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J. Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 1999; 360(6):609-15.
  • 34. Klein J, Weichel O, Hilgert M, Rupp J, Chatterjee SS, Nawrath H. Excitotoxic hippocampal membrane breakdown and its inhibition by bilobalide: role of chloride fluxes. Pharmacopsychiatry 2003; 36 (Suppl. 1):S78-83.
  • 35. Chatterjee SS, Kondratskaya EL, Krishtal OA. Structure-activity studies with Ginkgo biloba extract constituents as receptor-gated chloride channel blockers and modulators. Pharmacopsychiatry 2003;36 Suppl 1:S68-77.
  • 36. Cavadas C, Araújo I, Cotrim MD, Amaral T, Cunha AP, Macedo T, Fontes Ribeiro C. In vitro study on the interaction ot Valeriana officinalis L. extracts and their amino acids on GABAA receptor in rat brain.Arzneim-Forsch/Drug Res 1995; 45:753-5.
  • 37. McKenna DJ, Jones K, Hughes K. Ginkgo biloba [In:] Botanical Medicins. The desk reference for major herbal supplements. 2nd ed. The Haworth Herbal Press, New York, London, Oxford 2002:445-503.
  • 38. Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GA. Ginkgolides, diterpene trilactones of Ginkgo biloba, as antagonists at recombinant α1 β2 γ2L GABA(A) receptors. Eur J Pharmacol 2004; 494(2-3):131-8.
  • 39. Kiewert C, Kumar V, Hildmann O, Rueda M, Hartmann J, Naik RS, Klein J. Role of GABAergic antagonism in the neuroprotective effects of bilobalide. Brain Res 2007; 1128(1):70-8.
  • 40. Jones FA, Chatterjee SS, Davies JA. Effects of bilobalide on amino acid release and electrophysiology of cortical slices. Amino Acids 2002; 22:369-79.
  • 41. Kumar V, Singh PN, Muruganandam AV, Bhattacharya SK. Effect of Indian Hypericum perforatum Linn on animal models of cognitive dysfunction. J Ethnopharmacol 2000; 72(1-2):119-28.
  • 42. Baureithel KH, Buter KB, Engesser A, Burkard W, Schaffner W. Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species of Hypericum. Pharm Acta Helv 1997; 72(3):153-7.
  • 43. Gobbi M, Moia M, Pirona L, Morizzoni P, Mennini T. In vitro binding studies with two hypericum perforatum extracts hyperforin, hypericin and biapigenin on 5-HT6, 5-HT7, GABA(A)/benzodiazepine, sigma, NPY-Y1/Y2 receptors and dopamine transporters. Pharmacopsychiatry 2001; 34(Suppl. 1):S45-8.
  • 44. Kubin A, Wierrani F, Burner U, Alth G, Grünberger W. Hypericin – the facts about a controversial agent. Curr Pharm Des 2005; 11:233-53.
  • 45. Kondratskaya EL, Betz H, Krishtal OA, Laube B. The beta subunit increases the ginkgolide B sensitivity of inhibitory glycine receptors. Neuropharmacology 2005; 49(6):945-51.
  • 46. Ivic L, Sands TT, Fishkin N, Nakanishi K, Kriegstein AR, Stromgaard K. Terpene trilactones from Ginkgo biloba are antagonists of cortical glycine and GABA(A) receptors. J Biol Chem 2003; 278(49):49279-85.
  • 47. Heads JA, Hawthorne RL, Lynagh T, Lynch JW. Structure-activity analysis of ginkgolide binding in the glycine receptor pore. J Neurochem 2008; 105:1418-27.
  • 48. Jensen AA, Begum N, Vogensen SB, Knapp KM, Gundertofte K, Dzyuba SV, Ishii H, Nakanishi K, Kristiansen U, Stromgaad K. Probing the pharmacophore of ginkgolides as glycine receptor antagonist. J Med Chem 2007; 50;1610-17.
  • 49. Hawthorne R, Cromer BA, Ng HL, Parker MW, Lynch JW. Molecular determinants of ginkgolide bind in the glycine receptor pore. J Neurochem 2006; 98:395-407.
  • 50. Kondratskaya EL, Lishko PV, Chatterjee SS, Krishtal OA. BN52021, a platelet activating factor antagonist, is a selective blocker of glycine-gated chloride channel. Neurochem Int 2002; 40:647-53.
  • 51. Butterweck V, Nahrstedt A, Evans J, Hufeisen S, Rauser L, Savage J, Popadak B, Ernsberger P, Roth BL. In vitro receptor screening of pure constituents of St. John‘s wort reveals novel interactions with a number of GPCRs. Psychopharmacology 2002; 162(2):193-202.
  • 52. Guo M, Wang JH, Yang JY, Zhu D, Xu NJ, Pei G, Wu CF, Li X. Roles of ginsenosides on morphine-induced hyperactivity and rewarding effect in mice. Planta Med 2004; 70(7):688-90.
  • 53. Kim HS, Hong YT, Jang CG. Effects of the ginsenosides Rg1 and Rb1 on morphine-induced hyperactivity and reinforcement in mice. J Pharm Pharmacol 1998b; 50(5):555-60.
  • 54. Schumacher B, Scholle S. Holzl J, Khudeir N, Hess S, Müller CE. Lignans isolated from Valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors. J Nat Prod 2002; 65:1479-85.
  • 55. Butterweck V, Christoffel V, Nahrstedt A, Petereit F, Spengler B, Winterhoff H. Step by step removal of hyperforin and hypericin: activity profile of different Hypericum preparations in behavioral models. Life Sci 2003a; 73(5):627-39.
  • 56. Butterweck V. Mechanism of action of St John’s wort in depression : what is known? CNS Drugs 2003b; 17(8):539-62.
  • 57. Huguet F, Drieu K, Piriou A. Decreased cerebral 5-HT1A receptors during ageing: reversal by Ginkgo biloba extract (EGb 761). J Pharm Pharmacol 1994; 46(4):316-8.
  • 58. Dietz BM, Mahady GB, Pauli GF, Farnsworth NR. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro. Brain Res Mol Brain Res 2005; 138(2):191-7.
  • 59. Meltzer HY, Lowy MT. The serotonin hypothesis of depression [In:] Meltzer HY, ed. Psychopharmacology: the third generation of progress. Raven Press, New York 1987:513-26.
  • 60. Pilc A, Bijak M, Nowak G. Perspektywy badań nad lekami przeciwdepresyjnymi. Sympozjum Neuropsychofarmakologia 2000 – dziś i jutro. Kraków, 20-21 października 2000. Wydawnictwo Platan, Instytut Farmakologii PAN, Kraków:123-149.
  • 61. McEwen BS. Re-examination of the glucocorticoid hypothesis of stress and aging. Prog Brain Res 1992; 93:365-81.
  • 62. McEwen BS. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 2005; 54(5 Suppl. 1):20-3.
  • 63. Nowakowska E, Bobkiewicz-Kozłowska T. Wpływ nowych leków na funkcje poznawcze. [W:] Nowakowska E. (red.). Postępy farmakoterapii – nowe leki przeciwdepresyjne. Wydawnictwo Naukowe Akademii Medycznej im. Karola Marcinkowskiego, Poznań 2003:23-34.
  • 64. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 1999; 66:137-47.
  • 65. Sobów T, Nagat K, Sikorska B, Magierski R, Bratosiewicz-Wąsik J, Jasólski M, Liberski PP. Choroba Alzheimera. [W:] Szczudlik A, Liberski PP, Barcikowska M. (red.). Otępienie. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2004:177-210.
  • 66. Ossowska K. Farmakologia leków przeciwparkinsonowskich. Sympozjum Neuropsychofarmakologia 2000 – dziś i jutro. Kraków, 20-21 października 2000. Wydawnictwo Platan, Instytut Farmakologii PAN, Kraków:191-222.
  • 67. Ossowska K, Konieczny J, Wardas J, Golembiowska K, Wolfarth S, Pilc A. The role of striatal metabotropic glutamate receptors in Parkinson’s disease. Amino Acids 2002; 23:193-8.
  • 68. Jurkowlaniec E. Basic mechanisms of sleep and waking: role of the main neurotransmitter system of the brain. Sleep 2002; 2(1):21-32.
  • 69. Keramidas A, Moorhouse AJ, Pierce KD, Schofield PR, Barry PH. Cation-selective mutations in the M2 domain of the inhibitory glycine recetor channel reveal determinants of ion-charge selectivity. J Gen Physiol 2002; 119:393-410.
  • 70. Webb TI, Lynch JW. Molecular pharmacology of the glycine receptor chloride channel. Curr Pharmac Design 2007; 13:1-18.
  • 71. Yang Z, Cromer BA, Harvey RJ, Parker MW, Lynch JW. A proposed structural basis for picrotoxinin and picrotin binding in the glycine receptor pore. J Neurochem 2007; 103:580-9.
  • 72. Ahlemeyer B, Krieglstein J. Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 2003a; 60(9):1779-92.
  • 73. Ahlemeyer B, Krieglstein J. Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer’s disease. Pharmacopsychiatry 2003b; 36 (Suppl. 1):S8-14.
  • 74. Weber M, Dietrich D, Grasel I, Reuter G, Seifert G, Steinhauser C. 6-hydroxykynurenic acid and kynurenic acid differently antagonise AMPA and NMDA receptors in hippocampal neurones. J Neurochem 2001; 77(4):1108-15.
  • 75. Bespalov A, Dumpis M, Piotrovsky L, Zvartau E. Excitatory amino acid receptor antagonist kynurenic acid attenuates rewarding potential of morphine. Eur J Pharmacol 1994; 264(3):233-9.
  • 76. Brunello N, Rocagni G, Clostre F, Drieu K, Braquet P. Effects of an extract of Ginkgo biloba on noradrenergic systems of rat cerebral cortex. Pharmacol Res Commun 1985; 17(11):1063-72.
  • 77. Wada K, Sasaki K, Miura K, Yagi M, Kubota Y, Matsumoto T, Haga M. Isolation of bilobalide and ginkgolide A from Ginkgo biloba L. shorten the sleeping time induced in mice by anesthetics. Biol Pharm Bull 1993; 16(2):210-2.
  • 78. Greeson JM, Sanford B, Monti DA. St. John‘s wort (Hypericum perforatum): a review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 2001; 153(4):402-14.
  • 79. Müller WE, Schäfer C. Johaniskraut: in vitro Studie über Hypericum extrakt (Li 160), Hypericin und Kämpferol als Antidepresiva. Dtsch Apoth Ztg 1996; 136:17-24.
  • 80. Müller WE, Rolli M, Schafer C, Hafner U. Effects of hypericum extract (LI 160) in biochemical models of antidepressant activity. Pharmacopsychiatry 1997; 30 (Suppl. 2):S102-7.
  • 81. Müller WE, Singer A, Wonnemann M. Hyperforin--antidepressant activity by a novel mechanism of action. Pharmacopsychiatry 2001; 34 (Suppl. 1):S98-102.
  • 82. Simmen U, Higelin J, Berger-Buter K, Schaffner W, Lundstrom K. Neurochemical studies with St. John‘s wort in vitro. Pharmacopsychiatry 2001; 34 (Suppl. 1):S137-42.
  • 83. Perfumi M, Santoni M, Cippitelli A, Ciccocioppo R, Froldi R, Massi M. Hypericum perforatum CO2 extract and opioid receptor antagonists act synergistically to reduce ethanol intake in alcohol-preferring rats. Alcohol Clin Exp Res 2003; 27(10):1554-62.
  • 84. Butterweck V, Schmidt M. St. John’s wort: role of active compounds for its mechanism of action and efficacy. Wien Med Wochenschr 2007; 157(13-14):356-61.
  • 85. Raffa RB. Screen of receptor and uptake-site activity of hypericin component of St. John’s wort reveals sigma receptor binding. Life Sci 1998; 62(16):PL265-70.
  • 86. Kumar V, Mdzinarishvili A, Kiewert C, Abbruscato T, Bickel U, van der Schyf CJ, Klein J. NMDA Receptorantagonistic properties of hyperforin, a constituent of St. John’s Wort. J Pharmacol Sci 2006; 102:47-54.
  • 87. Teufel-Mayer R, Gleitz J. Effects of long-term administration of hypericum extracts on the affinity and density of the central serotonergic 5-HT1 A and 5-HT2 A receptors. Pharmacopsychiatry 1997; 30 (Suppl. 2):113-6.
  • 88. Müller WE, Singer A, Wonnemann M, Hafner U, Rolli M, Schafer C. Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract. Pharmacopsychiatry 1998; 31 (Suppl. 1):16-21.
  • 89. Neary JT, Bu Y. Hypericum LI 160 inhibits uptake of serotonin and norepinephrine in astrocytes. Brain Res 1999; 816(2):358-63.
  • 90. Hussain MD. Saint John’s Wort and analgesia: effect of St. John’s Wort on morphine induced analgesia. AAPS Pharm Sci 2000; 2(2):Abstract 1810.
  • 91. Jakovljevic V, Popovic M, Mimica-Dukic N, Sabo A, Gvozdenovic L. Pharmacodynamic study of Hypericum perforatum L. Phytomedicine 2000; 7(6):449-53.
  • 92. Nöldner M, Chatterjee S. Effects of two different extracts of St. John’s wort and some of their constituents on cytochrome P450 activities in rat liver microsomes. Pharmacopsychiatry 2001;34 (Suppl. 1):S108-10.
  • 93. Dürr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ, Fattinger K. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000; 68(6):598-604.
  • 94. Cantoni L, Rozio M, Mangolini A, Hauri L, Caccia S. Hyperforin contributes to the hepatic CYP3Ainducing effect of Hypericum perforatum extract in the mouse. Toxicol Sci 2003; 75(1):25-30.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-16067baa-c87f-41fd-9ffd-87d5012dbb78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.