PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2004 | 63 | 4 |

Tytuł artykułu

A morphometric study of the amygdala in the common shrew

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The characteristic features of the common shrew amygdala (CA), as shown by volumetric comparisons of the individual nuclei, are the poor development of the lateral (LA) and basomedial (BM) nuclei as well as the particularly strong formation of the basolateral (BL) and lateral olfactory tract (NLOT) nuclei. The central (CE), cortical (CO) and medial (ME) nuclei are also well organised in this species. All these features are even more distinctly visible when the total number of neurons in the nuclei referred to are compared. A comparison of the densities of neurons in the individual nuclei with the mean numerical density of cells in the CA indicates that there are the 3 different regions within the common shrew’s CA. The densities of neurons in the LA, BL, and BM are significantly lower than the mean density of cells in the CA (p < 0.05). In the CE this value does not differ from the mean (p > 0.05). In the CO, ME and NLOT the density values are significantly higher than the mean (p < 0.05). Furthermore, a similar division of the shrew’s CA can, to some extent, be performed using the size parameters of the amygdaloid neurons as a marker. Interestingly, the large neurons populate less densely organised CA areas like the LA, BL and BM, whereas the small cells populate the ME and NLOT, where the neurons are densely arranged. The CE and CO occupy intermediate positions, with the neurons similar in size to the mean for the shrew’s CA.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

63

Numer

4

Opis fizyczny

p.387-396,fig.,ref.

Twórcy

autor
  • University of Warmia and Mazury, Plac Lodzki 3, 10-767 Olsztyn, Poland
autor
autor

Bibliografia

  • 1. Berdel B, Moryś J, Maciejewska B, Dziewiątkowski J (1997) Volume and topographical changes of the basolateral complex during the development of the rat’s amygdaloid body. Folia Morphol, 56: 1–11.
  • 2. Berdel B, Moryś J (2000) Expression of calbindinD28k and parvalbumin during development of rat’s basolateral amygdaloid complex. Int J Dev Neurosci, 18: 501–513.
  • 3. Bookstein FL (1986) Size and shape spaces for landmark data in two dimensions. Statistical Science, 1: 181–222.
  • 4. Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull, 11: 349–365.
  • 5. Breathnach AS, Goldby F (1954) The amygdaloid nuclei, hippocampus and other parts of rhinencephalon in the porpoise (Phocaena phocaena). J Anat, 88: 267–291.
  • 6. Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum and hypothalamus: a PHAL anterograde track-tracing study in the rat. J Comp Neurol, 324: 180–194.
  • 7. Carlsen J, Heimer L (1988) The basolateral amygdaloid complex as a cortical-like structure. Brain Res, 441: 377–380.
  • 8. Carlsen J, Záborszky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: A combined retrograde fluorescent and immunohistochemical study. J Comp Neurol, 234: 155–167.
  • 9. Crosby EC, DeJorge BR, Schneider RC (1966) Evidence for some of the trends in the phylogenetic development of the vertebrate telencephalon. In: Hassler R, Stephan H (eds.) Evolution of the forebrain. Stuttgart, pp. 117–135.
  • 10. Crosby EC, Humphrey T (1944) Studies on the vertebrate telencephalon. III. The amygdaloid complex in the shrew (Blarina brevicauda). J Comp Neurol, 81: 285–305.
  • 11. Dziewiątkowski J, Berdel B, Kowiański P, Kubasik-Juraniec J, Bobek-Bilewicz B, Moryś J (1998) The amygdaloid body of the rabbit — a morphometric study using image analyser. Folia Morphol, 57: 93–103.
  • 12. Flugge G, Ahrens O, Fuchs E (1994) Monoamine receptors in the amygdaloid complex of the tree shrew (Tupaia belangeri). J Comp Neurol, 343: 597–608.
  • 13. Gower JC (1975) Generalized Procrustes analysis. Psychometrika, 40: 33–51.
  • 14. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in sterology and its prediction. J Microsc, 147: 229–263.
  • 15. Hecker S, Mesulam MM (1994) Two types of cholinergic projections to the rat amygdala. Neuroscience, 60: 383–397.
  • 16. Humphrey T (1936) The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertiment fiber connections. J Comp Neurol, 65: 603–711.
  • 17. Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol, 308: 249–276.
  • 18. Jagalska-Majewska H, Dziewiątkowski J, Wójcik S, Łuczyńska A, Kurlapska R, Moryś J (2001) The amygdaloid complex of the rabbit-morphological and histochemical study. Folia Morphol, 60: 259–280.
  • 19. Johnson TN (1957a) Studies on the brain of a guinea pig. I. The nuclear pattern of certain basal telencephalic centers. J Comp Neurol, 107: 353–477.
  • 20. Johnson TN (1957b) The olfactory centers and connections in the cerebral hemisphere of the mole (Scalonus aquaticus machrinus). J Comp Neurol, 107: 379–425.
  • 21. Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol, 35: 337–482.
  • 22. Kamal AM, Tombol T (1975) Golgi studies on the amygdaloid nuclei of the cat. J Hirnforsch, 16: 175–201.
  • 23. Kevetter GA, Winans SS (1981) Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the “vomeronasal amygdala”. J Comp Neurol, 197: 81–98.
  • 24. Kevetter GA, Winans SS (1981) Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the “olfactory amygdala”. J Comp Neurol, 197: 99–111.
  • 25. Krettek JE, Price JL (1978b) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol, 178: 255–280.
  • 26. LeDoux JE, Cicchetti P, Xagoranis A, Romanski LM (1990a) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci, 10: 1062–1069.
  • 27. LeDoux JE, Farb C, Ruggiero DA (1990b) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci, 10: 1043–1054.
  • 28. LeDoux JE, Farb C, Ruggiero DA (1991) Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci Lett, 134: 139–144.
  • 29. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci, 23: 155–184
  • 30. Loughlin SE, Fallon JH (1984) Substantia nigra and ventral tegmental area projections to cortex: topography and collateralization. Neuroscience, 11: 425–435.
  • 31. Luskin MB, Price JL (1983a) The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J Comp Neurol, 216: 264–291.
  • 32. Mayhew TM (1992) A review of recent advances in stereology for quantifying neural structures. J Neurocytol, 21: 313–328.
  • 33. Majidishad P, Pelli DG, LeDoux JE (1996) Disruption of fear conditioning to contextual stimuli but not to a tone by lesions of the accessory basal nucleus of the amygdala. Soc Neurosci Abstr, 22: 1116.
  • 34. Maren S, Fanselow MS (1995) Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J Neurosci, 15: 7548–7564.
  • 35. Martinez-Garcia F, Martinez-Marcos A, Lanuza E (2002) The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structure. Brain Res Bull, 57: 463–469.
  • 36. Mascagni F, McDonald AJ, Coleman JR (1993) Corticoamygdaloid and corticocortical projections of the rat temporal cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience, 57: 697–715.
  • 37. McDonald AJ (1982) Cytoarchitecture of the central amygdaloid nucleus of the rat. J Comp Neurol, 208: 401–418.
  • 38. McDonald AJ (1982) Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J Comp Neurol, 212: 293–312.
  • 39. McDonald AJ (1983) Cytoarchitecture of the nucleus of the lateral olfactory tract: a Golgi study in the rat. Brain Res Bull, 10: 497–503.
  • 40. McDonald AJ (1984) Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat. J Comp Neurol, 222: 589–606.
  • 41. McDonald AJ (1985) Morphology of peptide-containing neurons in the rat basolateral amygdaloid nucleus. Brain Res, 338: 186–191.
  • 42. McDonald AJ, Jackson TR (1987) Amygdaloid connections with posterior insular and temporal cortical areas in the rat. J Comp Neurol, 262: 59–77.
  • 43. McDonald AJ, Pearson JC (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci. Lett, 100: 53–58.
  • 44. McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaselous vulgaris leucoaggulutinin study in the rat. Neuroscience, 71: 55–75.
  • 45. McDonald AJ (1996) Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: colocalization of excitatory amino acids and projections to the limbic circuit. J Comp Neurol, 365: 367–379.
  • 46. McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience, 105: 681–693.
  • 47. Maksymowicz K (1963) Amygdaloid complex of the dog. Acta Biol Exp Wars, 23: 63–73.
  • 48. Millhouse OE, DeOlmos J (1983) Neuronal configurations in lateral and basolateral amygdala. Neuroscience, 10: 1269–1300.
  • 49. Millhouse OE, Uemura-Sumi M (1985) The structure of the nucleus of the lateral olfactory tract. J Comp Neurol, 233: 517–552.
  • 50. Millhouse OE (1986) The intercalated cells of the amygdala. J Comp Neurol, 247: 246–271.
  • 51. Morgane PJ, McFarland WL, Jacobs MS (1982) The limbic lobe of the Dolphin brain: a quantitative cytoarchitectonic study. J Hirnforsch, 23: 465–552.
  • 52. Moryś J, Berdel B, Jagalska-Majewska H, Łuczyńska A (1999) The basolateral amygdaloid complex — its development, morphology and functions. Folia Morphol, 58: 29–46.
  • 53. Ottersen OP (1982) Connections of the amygdala of the rat. Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol, 205: 30–48.
  • 54. Pare D, Smith Y (1993) Distribution of GABA immunoreactivity in the amygdaloid complex of the cat. Neuroscience, 57: 1061–1076.
  • 55. Pitkänen A, Amaral DG (1994) The distribution of GABA-ergic cells, fibers, and terminals in the monkey amygdaloid complex: an immunohistochemical and in situ hybridization study. J Neurosci, 14: 2200–2224.
  • 56. Pitkänen A, Jolkkonen E, Kemppainen S (2000) Anatomical heterogeneity of the rat amygdaloid complex. Folia Morphol, 59: 1–23.
  • 57. Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zool, 39: 40–59.
  • 58. Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16: 197–223.
  • 59. Romanski LM, LeDoux JE (1993) Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex, 3: 515–532.
  • 60. Równiak M, Szteyn S, Robak A, Klawon M, Dusza M (1994) The types of neurons in the neostriatum of bison bonasus. Nissl and Golgi study. Folia Morphol, 53: 165–176.
  • 61. Równiak M (2002) Cytoarchitektonika i analiza jąder ciała migdałowatego u wybranych gatunków ssaków łożyskowych. PhD Thesis, Medical University of Gdańsk, 1–95.
  • 62. Tuunanen J, Pitkänen A (2000) Do seizures cause neuronal damage in rat amygdala kindling? Epilepsy Res, 39: 171–176.
  • 63. Salter CF (1975) A morphological study of the lateral olfactory areas of the telencephalon in the mongolian gerbil, Meriones unguiculatus. J Hirnforsh, 16: 223–244.
  • 64. Spacek J (1989) Dynamics of the Golgi method: a time-lapse study of the early stages of impregnation in single sections. J Neurocytol. 18: 27–38.
  • 65. Stephan H, Andy OJ (1977) Quantitative comparisons of the amygdala in insectivores and primates. Acta Anat, 98: 130–153.
  • 66. Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol, 35: 1–29.
  • 67. Stephan H, Frahm H, Baron G (1987) Comparisons of brain structure volumes in insectivora and primates. VII. Amygdaloid body. J Hirnforsh, 28: 571–584.
  • 68. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci, 21: 323–331.
  • 69. Śmiałowski A (1965) Amygdaloid complex of the dog. Acta Biol Exp, 25: 77–89.
  • 70. Turner BH, Zimmer J (1984) The architecture and some of the interconnections of the rat’s amygdala and lateral periallocortex. J Comp Neurol, 227: 540–557.
  • 71. West MJ, Gundersen HJG (1990) Unbiased sterological estimation of the number of neurons in the human hippocampus. J Comp Neurol, 296: 1–22.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1592b486-2cbb-4511-b3ac-ffe47ac7f247
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.