PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 50 | 4 |

Tytuł artykułu

Analogs of diadenosine tetraphosphate [Ap4A]

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review summarizes our knowledge of analogs and derivatives of diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), the most extensively studied member of the dinucleoside 5',5"'-P1,Pn-polyphosphate (NpnN) family. After a short discussion of enzymes that may be responsible for the accumulation and degradation of Np4N's in the cell, this review focuses on chemically and/or enzymatically produced analogs and their practical applications. Particular attention is paid to compounds that have aided the study of enzymes involved in the metabolism of Ap4A (Np4N'). Certain Ap4A analogs were alternative substrates of Ap4A-degrading enzymes and/or acted as enzyme inhibitors, some other helped to establish enzyme mechanisms, increased the sensitivity of certain enzyme assays or produced stable enzyme:ligand complexes for structural analysis.

Wydawca

-

Rocznik

Tom

50

Numer

4

Opis fizyczny

p.947-972,fig.,ref.

Twórcy

  • University of Agriculture, Wolynska 35, 60-637 Poznan, Poland

Bibliografia

  • Atencia EA, Madrid O, Gunther Sillero MA, Sillero A. (1999) T4 RNA ligase catalyzes the synthesis of dinucleoside polyphosphates. Eur J Biochem.; 261: 802-11.
  • Bailey S, Sedelnikova S, Blackburn GM, Abdelghany HM, Baker PJ, McLennan AG, Rafferty JB. (2002) The crystal structure of diadenosine tetraphosphate hydrolase from Caenorhabditis elegans in free and binary complex forms. Structure.; 10: 589-600.
  • Baraniak J, Wasilewska E, Korczynski D, Stec WJ. (1999) Diadenylated polyols as new non-isopolar analogues of diadenosine tri- and tetraphosphates. Tetrahedron Lett.; 40: 8603-6.
  • Baril E, Bonin P, Burstein D, Mara K, Zamecnik P. (1983) Resolution of the diadenosine 5',5'''-P1,P4-tetraphosphate binding subunit from a multiprotein form of HeLa cell DNA polymerase alpha. Proc Natl Acad Sci US A.; 80: 4931-5.
  • Barnes LD, Garrison PN, Siprashvili Z, Guranowski A, Robinson AK, Ingram SW, Croce CM, Ohta M, Huebner K. (1996) Fhit, a putative tumor suppressor in humans, is a dinucleoside 5',5'''-P1,^-triphosphate hydrolase. Biochemistry.; 35: 11529-35.
  • Bartkiewicz M, Sierakowska H, Shugar D. (1984) Nucleotide pyrophosphatase from potato tubers; purification and properties. Eur J Biochem.; 143: 419-26.
  • Baxi MD, McLennan AG, Vishwanatha JK. (1994) Characterization of the HeLa cell DNA polymerase alpha-associated Ap4A binding protein by photoaffinity labeling. Biochemistry.; 33: 14601-7.
  • Bessman MJ, Frick DN, O'Handley SF. (1996) The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem.; 271: 25059-62.
  • Bessman MJ, Walsh JD, Dunn ChA, Swaminathan J, Weldon JE, Shen J. (2001) The gene ygdP, associated with the invasiveness of Escherichia coli K1, designates a Nudix hydrolase, Orf176, active on adenosine(5')-pentaphospho-(5')- adenosine (Ap5A). J Biol Chem.; 276: 37834-38.
  • Blackburn GM, Guo MJ. (1990) Chemical synthesis, separation, and identification of diastereoisomers of P^1,P4-dithio- 5',5'''-diadenosyl P^P^-tetraphosphate and its P2,P3-methylene analogues. Tetrahedron Lett.; 31: 4371-4.
  • Blackburn GM, Taylor GE, Tattershall RH, Thatcher GRJ, McLennan AG. (1987a) Phosphonate analogues of biological phosphates. In Biophosphates and their analogues _synthesis, structure, metabolism and activity. Bruzik KS, Stec WJ, eds, pp 451-64. Elsevier, Amsterdam.
  • Blackburn GM, Taylor GE, Thatcher GRJ, Prescott M, McLennan AG. (1987b) Synthesis and resistance to enzymic hydrolysis of stereochemically-defined phosphonate and thiophosphate analogues of P1,P4-bis(5'-adenosyl) tetraphosphate. Nucleic Acids Res. ; 15: 6991-7004.
  • Blackburn GM, Guo M-J, McLennan AG. (1992) Synthetic structural analogues of dinucleoside polyphosphates. In Ap4A and other dinucleoside polyphosphates. McLennan AG. ed, pp 305-42. CRC Press, Boca Raton, FL.
  • Bone R, Cheng Y-C, Wolfenden R. (1986a) Inhibition of thymidine kinase by P1-(adenosine-5')-P5-(thymidine-5')- pentaphosphate. J Biol Chem. ; 261: 5731-5.
  • Bone R, Cheng Y-C, Wolfenden R. (1986b) Inhibition of adenosine and thymidylate kinases by bisubstrate analogs. J Biol Chem.; 261: 16410-3.
  • Brevet A, Coste H, Fromant M, Plateau P, Blanquet S. (1987) Yeast diadenosine 5',5'''-P1,^-tetraphosphate alpha,beta- phosphorylase behaves as a dinucleoside tetraphosphate synthetase. Biochemistry.; 26: 4763-8.
  • Brevet A, Chen J, Fromant M, Blanquet S, Plateau P. (1991) Isolation and characterization of a dinucleoside triphosphatase from Saccharomyces cerevisiae. JBacteriol.; 173: 5275-9.
  • Cameselle JC, Costas MJ, Gunther Sillero MA, Sillero A. (1984) Two low Am hydrolytic activities on dinucleoside 5',5'''- P1,P4-tetraphosphates in rat liver. J Biol Chem.; 259: 2879-85.
  • Campbell SA, Kemerling AJ, Hilderman RH. (1999) Characterization of P1,P4-diadenosine 5'-tetraphosphate binding on bovine aortic endothelial cells. Arch Biochem Biophys.; 364: 280-5.
  • Cartwright JL, McLennan AG. (1999) The Saccharomyces cerevisiae YOR163w gene encodes a diadenosine 5',5'''-P1,P6- hexaphosphate (Ap6A) hydrolase member of the MutT motif (Nudix hydrolase) family. J Biol Chem.; 274: 8604-10.
  • Cartwright JL, Britton P, Minnick MF, McLennan AG. (1999) The ialA invasion gene of Bartonella bacilliformis encodes a (di)nucleoside polyphosphate hydrolase of the MutT motif family and has homologs in other invasive bacteria. Biochem Biophys Res Commun.; 256: 474-9.
  • Chavan AJ, Haley BE, Volkin DB, Marfia KE, Verticelli AM, Bruner MW, Draper JP, Burke CJ, Middaugh CR. (1994) Interaction of nucleotides with acidic fibroblast growth factor (FGF-1). Biochemistry.; 33: 7193-202.
  • Cayley PJ, Kerr IM. (1982) Synthesis, characterisation and biological significance of (2'-5')oligoadenylate derivatives of NAD+, ADP-ribose and adenosine(5')tetraphospho(5')adenosine. Eur J Biochem.; 122: 601-8.
  • Chen SW, Gallo SJ, Kim BK, Guo MJ, Blackburn GM, Zamecnik PC. (1997) ^1,^-Dithio-P2,P3-monochloromethylene diadenosine 5',5'''-P1,P4-tetraphosphate: A novel antiplatelet agent. Proc Natl Acad Sci US A.; 94: 4034-9.
  • Cheng N, Payne RC, Kemp Jr. WE, Traut ThW. (1986) Homogeneous uridine kinase from Ehrlich ascites tumor: substrate specificity and inhibition by bisubstrate analogs. Mol Pharmacol.; 30: 159-63.
  • Conyers GB, Bessman MJ. (1999) The gene, ialA, associated with the invasion of human erythrocytes by Bartonella bacilliformis, designates a Nudix hydrolase active on dinucleoside 5'-polyphosphates. J Biol Chem.; 274: 1203-6.
  • Coste H, Brevet A, Plateau P, Blanquet S. (1987) Nonadenylylated bis(5'-nucleosidyl) tetraphosphates occur in Saccharomyces cerevisiae and in Escherichia coli and accumulate upon temperature shift or exposure to cadmium. J Biol Chem.; 262: 12096-103.
  • Davies LC, Stock JA, Barrie SE, Orr RM, Harrap KR. (1988) Dinucleotide analogues as inhibitors of thymidine kinase, thymidylate kinase, and ribonucleotide reductase. J Med Chem.; 31: 1305-8.
  • Delaney SM, Blackburn GM, Geiger JD. (1997) Diadenosine polyphosphates inhibit adenosine kinase activity but decrease levels of endogenous adenosine in rat brain. Eur J Pharmacol.; 332: 35-42.
  • Dieckmann R, Pavela-Vrancic M, von Dohren H. (2001) Synthesis of (di)adenosine polyphosphates by non-ribosomal peptide synthetases (NRPS). Biochim Biophys Acta.; 1546: 234-41.
  • Dixon RM, Lowe G. (1989) Synthesis of (Rp,Rp)-^1,^-bis(5'-adenosyl)-1[17O,18O2],4 [17O,18O2]tetraphosphate from (Sp,Sp)-P1,P4-bis(5'-adenosyl)-1[thi^o-18O2],4[thio-18O2]tetraphosphate with retention at phosphorus and the stereochemical course of hydrolysis by the unsymmetrical Ap4A phosphodiesterase from lupin seeds. J Biol Chem.; 264: 2069-74.
  • Dominici P, Scholz G, Kwok F, Churchich JE. (1988) Affinity labeling of pyridoxal kinase with adenosine polyphosphopyridoxal. J Biol Chem.; 263: 14712-6.
  • Edgecombe M, Craddock HS, Smith DC, McLennan AG, Fisher MJ. (1997) Diadenosine polyphosphate-stimulated gluconeogenesis in isolated rat proximal tubules. Biochem J.; 323: 451-6.
  • Egner U, Tomaselli AG, Schulz GE. (1987) Structure of the complex of yeast adenylate kinase with the inhibitor P^P5- di(adenosine-5'-)pentaphosphate at 2.6 A resolution. JMol Biol.; 195: 649-58.
  • Feldhaus P, Frohlich T, Goody RS, Isakov M, Schirmer RH. (1975) Synthetic inhibitors of adenylate kinases in the assays for ATPases and phosphokinases. Eur J Biochem.; 57: 197-204.
  • Fontes R, Sillero MA, Sillero A. (1998) Acyl-CoA synthetase from Pseudomonas fragi catalyzes the synthesis of adenosine 5'-polyphosphates and dinucleoside polyphosphates. J Bacteriol.; 180: 3152-8.
  • Fukuoda K, Suda F, Ishikawa M, Hata T. (1995) A convenient method for the synthesis of ATP and Ap4A. Nucleosides Nucleotides.; 14: 693-4.
  • Garrison PN, Barnes LD. (1992) Determination of dinucleoside polyphosphates. In Ap4A and other dinucleoside polyphosphates. McLennan AG, ed, pp 29-61. CRC Press, Boca Raton, FL.
  • Garrison PN, de la Pena CE, Barnes LD. (1993) Synthesis and use of a chromogenic substrate analog for Ap4A catabolic enzymes. Anal Biochem.; 210: 226-30.
  • Gasmi L, Cartwright JL, McLennan AG. (1998) The hydrolytic activity of bovine adrenal medullary plasma membranes towards diadenosine polyphosphates is due to alkaline phosphodiesterase-I. Biochim Biophys Acta.; 1405: 121-7.
  • Grummt F. (1978) Diadenosine 5',5'''-P1,P4-tetraphosphate triggers initiation of in vitro DNA replication in baby hamster kidney cells. Proc Natl Acad Sci U S A.; 75: 371-4.
  • Grummt F, Waltl G, Jantzen H-M, Hamprecht K, Huebscher U, Kuenzle CC. (1979) Diadenosine 5',5'''-P1,P4- tetraphosphate, a ligand of the 57-kilodalton subunit of DNA polymerase alpha. Proc Natl Acad Sci U S A.; 76: 6081-5.
  • Gunther Sillero MA, Guranowski A, Sillero A. (1991) Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase. Eur J Biochem.; 202: 507-13.
  • Gunther Sillero MA, Madrid O, Zaera E, Sillero A. (1997) 2',3'-Dideoxynucleoside triphosphates (ddNTP) and di-2',3'- dideoxynucleoside tetraphosphates (ddNp4ddN) behave differently to the corresponding NTP and Np4N counterparts as substrates of firefly luciferase, dinucleoside tetraphosphatase and phosphodiesterases. Biochim Biophys Acta.; 1334: 191-9.
  • Gunther Sillero MA, Socorro S, Baptista MJ, del Valle M, de Diego A, Sillero A. (2001) Poly(A) polymerase from Escherichia coli adenylylates the 3'-hydroxyl residue of nucleosides, nucleoside 5'-phosphates and nucleoside(5')oligophospho(5')nucleosides (NpnN). Eur J Biochem.; 268: 3605-11.
  • Gunther Sillero MA, Montes M, de Diego A, Del Valle M, Atencia EA, Sillero A. (2002) Thermostable Pyrococcus furiosusDNA ligase catalyzes the synthesis of (di)nucleoside polyphosphates. Extremophiles.; 6: 45-50.
  • Guranowski A. (2000) Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol Ther.; 87: 117-39.
  • Guranowski A, Blanquet S. (1985) Phosphorolytic cleavage of diadenosine 5',5'''-P1,P4-tetraphosphate. Properties of homogeneous diadenosine 5',5'''-P1,P4-tetraphosphate alpha,beta-phosphorylase from Saccharomyces cerevisiae. J Biol Chem.; 260: 3542-7.
  • Guranowski A, Jakubowski H, Holler H. (1983) Catabolism of diadenosine 5',5'''-P1,P4-tetraphosphate in procaryotes; purification and properties of diadenosine 5',5'''-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. J Biol Chem.; 258: 14784-9.
  • Guranowski A, Biryukov A, Tarussova NB, Khomutov RM, Jakubowski H. (1987) Phosphonate analogues of diadenosine 5',5'''-P1,P4-tetraphosphate as substrates or inhibitors of procaryotic and eucaryotic enzymes degrading dinucleoside tetraphosphates. Biochemistry.; 26: 3425-9.
  • Guranowski A, Just G, Holler E, Jakubowski H. (1988) Synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate (AppppA) from adenosine 5'-phosphosulfate and adenosine 5'-triphosphate catalyzed by yeast AppppA phosphorylase. Biochemistry.; 27: 2959-64.
  • Guranowski A, Starzynska E, Taylor GE, Blackburn GM. (1989) Studies on some specific Ap4A-degrading enzymes with the use of various methylene analogues of P^1P4-bis-(5',5'''-adenosyl) tetraphosphate. Biochem J.; 262: 241-4.
  • Guranowski A, Brown P, Ashton PA, Blackburn GM. (1994) Regiospecificity of the hydrolysis of diadenosine polyphosphates catalyzed by three specific pyrophosphohydrolases. Biochemistry.; 33: 235-40.
  • Guranowski A, Gunther Sillero MA, Sillero A. (1990) Firefly luciferase synthesizes P1,P4-bis(5'-adenosyl)tetraphosphate (Ap4A) and other dinucleoside polyphosphates. FEBSLett.; 271: 215-8.
  • Guranowski A, Starzynska E, Gunther Sillero MA, Sillero A. (1995) Conversion of adenosine (5')oligophospho(5')adenosines into inosine(5')oligophospho(5')inosines by non-specific adenylate deaminase from the snail Helixpomatia. Biochim Biophys Acta.; 1243: 78-84.
  • Guranowski A, Starzynska E, Bojarska E, Stepinski J, Darzynkiewicz E. (1996) Dinucleoside 5',5'''-P1,^-triphosphate hydrolase from yellow lupin (Lupinus luteus) seeds: purification to homogeneity and hydrolysis of mRNA 5'-cap analogs. Protein Expr Purif.; 8: 416-22.
  • Guranowski A, Galbas M, Hartmenn R, Justesen J. (2000) Selective degradation of 2-adenylated diadenosine tri- and tetraphosphates, Ap3A and Ap4A, by two specific human dinucleoside polyphosphate hydrolases. Arch Biochem Biophys.; 373: 218-24.
  • Guranowski A, Sillero A, Gunther Sillero MA. (2003a) Selective splitting of 3' -adenylated dinucleoside polyphosphates by specific enzymes degrading dinucleoside polyphosphates. Acta Biochim Polon.; 50: 123-30.
  • Guranowski A, Starzynska E, McLennan AG, Baraniak J, Stec W. (2003b) Adenosine-5'-0-phosphorylated and adenosine- 5'-0-phosphorothioylated polyols as strong inhibitors of symmetrical and asymmetrical dinucleoside tetraphosphatases. Biochem J.; 373: 635-40.
  • Guranowski A, de Diego A, Sillero A, Gunther Sillero MA. (2004) Uridine 5'polyphosphates (p4Ü and p5Ü) and uridine (5')polyphospho(5')nucleosides (UpnNs) can be synthesized by UTP:glucose-1-phosphate uridylyltransferase from Saccharomyces cerevisiae. FEBS Lett.; (in press).
  • Haikal HF, Chavis C, Pompon A, Imbach J-L. (1989) 5'-Monothiophosphate analogues of diadenosine oligophosphates. Bull Soc Chim France. ; 521-31.
  • Harris TK, Wu G, Massiah MA, Mildvan AS. (2000) Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Biochemistry.; 39: 1655-74.
  • Harrison MJ, Brossmer R, Goody RS. (1975) Inhibition of platelet aggregation and the platelet release reaction by alpha, omega diadenosine polyphosphates. FEBS Lett.; 54: 57-60.
  • Hibi T, Kato H, Nishioka T, Oda J, Yamaguchi H, Katsube Y, Tanizawa K, Fukui T. (1993) Use of adenosine(5')polyphospho(5')pyridoxals to study the substrate-binding region of glutathione synthetase from Escherichia coliB. Biochemistry.; 32: 1548-54.
  • Hoyle CHV, Hilderman RH, Pintor JJ, Schluter H, King BF. (2001) Diadenosine polyphosphates as extracellular signal molecules. Drug Dev Res.; 52: 260-73.
  • Ikeda S, Chakravarty R, Ives DH. (1986) Multisubstrate analogs for deoxynucleoside kinases; triphosphate end products and synthetic bisubstrate analogs exhibit identical modes of binding and are useful probes for distinguishing kinetic mechanisms. J Biol Chem.; 261: 15836-43.
  • Ingram SW, Stratemann SA, Barnes LD; (1999) Schizosaccharomycespombe Aps1, a diadenosine 5',5'''-P1,P5- hexaphosphate hydrolase that is a member of the Nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry.; 38: 3649-55.
  • Jakubowski H. (1983) Synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate and related compounds by plant (Lupinus luteus) seryl-tRNA and phenylalanyl-tRNA synthetases. Acta Biochim Polon.; 30: 51-69.
  • Jakubowski H, Guranowski A. (1983) Enzymes hydrolyzing ApppA and/or AppppA in higher plants; purification and some properties of diadenosine triphosphatase, diadenosine tetraphosphatase, and phosphodiesterase from yellow lupin (Lupinus luteus) seeds. J Biol Chem.; 258: 9982-9.
  • Jankowski J, Tepel M, van der Giet M, Tente IM, Henning L, Junker R, Zidek W, Schluter H. (1999) Identification and characterization of P1, P^-di(adenosine-5')-heptaphosphate from human platelets. J Biol Chem.; 274: 23926-31.
  • Lavie A, Konrad M, Brundiers R, Goody RS, Schlichting I, Reinstein J. (1998a) Crystal structure of yeast thymidylate kinase complexed with bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-thymidyl) pentaphosphate (TP5A) at 2.0 A resolution: implications for catalysis and AZT activation. Biochemistry.; 37: 3677-86.
  • Lavie A, Ostermann N, Brundiers R, Goody RS, Reinstein J, Konrad M, Schlichting I. (1998b) Structural basis for efficient phosphorylation of 3'-azidothymidine monophosphate by Escherichia coli thymidylate kinase. Proc Natl Acad SciUSA.; 95: 14045-50.
  • Lee PhC, Bochner BR, Ames BN. (1983) Diadenosine 5',5'''-P1,P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. JBiol Chem.; 258: 6827-34.
  • Lienhard GE, Secemski II. (1973) ^^1,^5-Di(adenosine-5') pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J Biol Chem.; 248: 1121-3.
  • Liu JJ, McLennan AG. (1994) Purification and properties of GTP:GTP guanylyltransferase from encysted embryos of the brine shrimp Artemia. J Biol Chem.; 269: 11787-94.
  • Liu X, Brenner Ch, Guranowski A, Starzynska E, Blackburn GM. (1999) New tripodal, 'supercharged" analogues of adenosine nucleotides; inhibitors for the Fhit Ap3A hydrolase. Angew Chem Int Ed.; 38: 1244-7.
  • Lobaton CD, Sillero MAG, Sillero A. (1975) Diadenosine triphosphate splitting by rat liver extracts. Biochem Biophys Res Commun.; 67: 279-86.
  • Lundin A, Nilsson Ch, Gerhard M, Andersson DI, Krabbe M, Engstrand L. (2003) The NudA protein in the gastric pathogen Helicobacter pylori is an ubiquitous and constitutively expressed dinucleoside polyphosphate hydrolase. J Biol Chem.; 278: 12574-8.
  • Luo J, Jankowski J, Knobloch M, van der Giet M, Gardanis K, Russ T, Vahlensieck U, Neumann J, Schmitz W, Tepel M, Deng MC, Zidek W, Schluter H. (1999) Identification and characterization of diadenosine 5',5'''-P1,P2-diphosphate and diadenosine 5',5'-P1,P3-triphosphate in human myocardial tissue. FASEB J.; 13: 695-705.
  • Luthje J, Ogilvie A. (1988) Catabolism of Ap4A and Ap3A in whole blood. The dinucleotides are long-lived signal molecules in the blood ending up as intracellular ATP in the erythrocytes. Eur J Biochem.: 173: 241-5.
  • Lazewska D, Guranowski A. (1990) ^&lPha-chiral phosphorothioate analogues of bis(5'-adenosyl)tetraphosphate (Ap4A); their enzymatic synthesis and degradation. Nucleic Acids Res.; 18: 6083-8.
  • Madrid O, Martin D, Atencia EA, Sillero A, Gunther Sillero MA. (1998) T4 DNA ligase synthesizes dinucleoside polyphosphates. FEBSLett.; 433: 283-6.
  • Maksel D, Gayler K, Liu X, Blackburn M, McLennan AG, Guranowski A. (1999) Methanetrisphosphonate and its adenine nucleotide derivatives as inhibitors of human and plant diadenosine tetraphosphate hydrolases. Cell Mol Biol Lett.; 4: 418.
  • Maksel D, Gooley PR, Swarbrick JD, Guranowski A, Gange Ch, Blackburn GM, Gayler KR. (2001) Characterization of active residues in diadenosine tetraphosphate hydrolase from Lupinus angustifolius. Biochem J.; 357: 399-405.
  • McLennan AG. (2000) Dinucleoside polyphosphates — friend or foe? Pharmacol Ther.; 87: 73-89.
  • McLennan AG, Taylor GE, Prescott M, Blackburn GM. (1989) Recognition of beta beta-substituted and alpha beta,alpha'beta'-disubstituted phosphonate analogues of bis(5'-adenosyl) tetraphosphate by the bis(5'-nucleosidyl)- tetraphosphate pyrophosphohydrolases from Artemia embryos and Escherichia coli. Biochemistry.; 28: 3868-75.
  • Meyer PR, Matsuura SE, So AG, Scott WA. (1998) Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc Natl Acad Sci U S A.; 95: 13471-6.
  • Miras-Portugal MT, Gualix J, Mateo J, Diaz-Hernandez M, Gomez-Villafuertes R, Castro E, Pintor J. (1999) Diadenosine polyphosphates, extracellular function and catabolism. Prog Brain Res.; 120: 397-409.
  • Muller ChW, Schulz GE. (1988) Structure of the complex of adenylate kinase from Escherichia coli with the inhibitor f^1,P5-di(adenosine-5'-) pentaphosphate. J Mol Biol.; 202: 909-12.
  • Ng KE, Orgel LE. (1987) The action of a water-soluble carbodiimide on adenosine-5'- polyphosphates. Nucleic Acids Res. ; 15: 3573-80.
  • Nishimura A. (1998) The timing of cell division: Ap4A as a signal. Trends Biochem Sci.; 23: 157-9.
  • Ortiz B, Sillero A, Gunther Sillero MA. (1993) Specific synthesis of adenosine(5')tetraphospho(5')nucleoside and adenosine (5')oligophospho(5')adenosine (n>4) catalyzed by firefly luciferase. Eur J Biochem.; 212: 263-70.
  • Pai EF, Sachsenheimer W, Schirmer RH, Schulz GE. (1977) Substrate positions and induced-fit in crystalline adenylate kinase. J Mol Biol.; 114: 37-45.
  • Palfi Z, Suranyi G, Borbely G. (1991) Alteration in the accumulation of adenylylated nucleotides in heavy-metal-ion- stressed and heat-stressed Synechococcus sp. strain PCC 6301, cyanobacterium, in light and dark. Biochem J.; 276: 487-91.
  • Pandey V, Modak MJ. (1987) Biochemistry of terminal deoxynucleotidyltransferase (TdT); characterization and mechanism of inhibition of TdT by P1,^5-bis(5'-adenosyl) pentaphosphate. Biochemistry.; 26: 2033-8.
  • Pandey VN, Amrute SB, Satav JG, Modak MJ. (1987) Inhibition of terminal deoxynucleotidyl transferase by adenine dinucleotides. Unique inhibitory action of Ap5A. FEBS Lett.; 213: 204-8.
  • Pietrowska-Borek M, Stuible H-P, Kombrink E, Guranowski A. (2003) 4-Coumarate:coenzyme A ligase has the catalytic capacity to synthesize and reutilize various (di)adenosine polyphosphates. Plant Physiol. ; 131: 1401-10.
  • Pintor J, Diaz Rey MA, Torres M, Miras Portugal MT. (1992a) Presence of diadenosine polyphosphates — Ap4A and Ap5A — in rat brain synaptic terminals. Ca2+ dependent release evoked by 4-aminopyridine and veratridine. Neurosci Lett.; 136: 141-4.
  • Pintor J, Gualix J, Miras-Portugal MT. (1997) Diinosine polyphosphates, a group of dinucleotides with antagonistic effects on diadenosine polyphosphate receptor. Mol Pharmacol.; 51: 277-84.
  • Pintor J, Rotllan P, Torres M, Miras Portugal M T. (1992b) Characterization and quantification of diadenosine hexaphosphate in chromaffin cells: Granular storage and secretagogue-induced release. Anal Biochem.; 200: 296-300.
  • Pintor J, Torres M, Castro E, Miras-Portugal MT. (1991) Characterisation of diadenosine tetraphosphate (Ap4A) binding site in cultured chromaffin cells: evidence for a P2Y site. Br J Pharmacol.; 103: 1980-4.
  • Plateau P, Blanquet S. (1982) Zinc-dependent synthesis of various dinucleoside 5',5'''-P1,P3-tri- or 5',5'''-P1,P4- tetraphosphates by Escherichia coli lysyl-tRNA synthetase. Biochemistry.; 21: 5273-9.
  • Plateau P, Fromant M, Brevet A, Gesquiere A, Blanquet S. (1985) Catabolism of bis(5' -nucleosidyl) oligophosphates in Escherichia coli: metal requirements and substrate specificity of homogeneous diadenosine-5',5'''-P1,P4-tetraphosphate pyrophosphohydrolase. Biochemistry; 24: 914-22.
  • Powers SG, Griffith OW, Meister A. (1977) Inhibition of carbamyl phosphate synthetase by P1,P5-di(adenosine 5') pentaphosphate; evidence for two ATP binding sites. J Biol Chem.; 252: 3558-60.
  • Prescott M, McLennan AG. (1990) Synthesis and application of 8-azido photoaffinity analogs of P^1,P3-bis(5'- adenosyl)triphosphate and P1,P4-bis(5'-adenosyl)tetraphosphate. Anal Biochem.; 184: 330-7.
  • Prescott M, Milne AD, McLennan AG. (1989) Characterization of the bis(5'-nucleosidyl) tetraphosphate pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia. Biochem J.; 259: 831-8.
  • Prescott M, Thorne MH, Milne AD, McLennan AG. (1992) Characterisation of a bis(5'-nucleosidyl)triphosphate pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia. Int J Biochem.; 24: 565-71.
  • Puri N, Hunsch S, Sund Ch, Ugi I, Chattopadhyaya J. (1995) The synthesis and reactivity of new 2-(N,N- diisopropylamino)-3-methylsulfonyl-1,3,2-benzoxazaphospholes. The utility of the 5-chloro analogue in the one-pot synthesis of oligothiophosphates: [ApsppA, ApspppA, ppp5' A2' ps5' A, m7GpsppA, Apspppp, Apspp]. Tetrahedron.; 51: 2991-3014.
  • Pype S, Slegers H. (1993) Inhibition of casein kinase II by dinucleoside polyphosphates. Enzyme Protein.; 47: 14-21.
  • Randerath K, Janeway CM, Stephenson ML, Zamecnik PC. (1966) Isolation and characterization of dinucleoside tetra- and triphosphates formed in the presence of lysyl-sRNA synthetase. Biochem Biophys Res Commun.; 24: 98-105.
  • Reinstein J, Vetter IR, Schlichting I, Rosch P, Wittinhofer A, Goody RS. (1990) Fluorescence and NMR investigations on the ligand binding properties of adenylate kinases. Biochemistry.; 29: 7440-50.
  • Reintamm T, Lopp A, Kuusksalu A, Pehk T, Kelve M. (2003) ATP N-glycosidase a novel ATP-converting activity from a marine sponge Axinella polypoides. Eur J Biochem. ; 270: 4122-32.
  • Reiss JR, Moffatt JG. (1965) Dismutation reactions of nucleoside polyphosphates. III. The synthesis of alpha, omega- dinucleoside 5'-polyphosphates. J Org Chem.; 30: 3381-7.
  • Rodriguez-Pascual F, Cortes R, Torres M, Palacios JM, Miras-Portugal MT. (1997) Distribution of [3H]adenosine tetraphosphate binding sites in rat brain. Neuroscience.; 77: 247-55.
  • Rotllan P, Miras Portugal MT. (1985) Adenosine kinase from bovine adrenal medulla. Eur J Biochem.; 151: 365-71.
  • Rotllan P, Ramos A, Pintor J, Torres M, Miras-Portugal MT. (1991) Di(1,N6-ethenoadenosine)5',5'''-P1,P4-tetrapho-sphate, a fluorescent enzymatically active derivative of Ap4A. FEBSLett.; 280: 371-4.
  • Safrany ST, Ingram SW, Cartwright JL, Falck JR, McLennan AG, Barnes LD, Shears SB. (1999) The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase: overlapping substrate specificities in a MutT motif. J Biol Chem.; 274: 21735-40.
  • Schluter H, Offers E, Bruggemann G, van der Giet M, Tepel M, Nordhoff E, Karas M, Spieker C, Witzel H, Zidek W. (1994) Diadenosine phosphates and the physiological control of blood pressure. Nature.; 367: 186-8.
  • Shumiyanzeva VV, Poletaev AI. (1984) Fluorescent and imido-analogues of diadenosine tetraphosphate. Nucleic Acids Res Symp Ser.; 14: 289-90.
  • Suzuki H, Tanaka Y, Buonamassa DT, Farina B, Leone E. (1987) Inhibition of ADP-ribosylation of histone H1 by analogs of diadenosine 5',5'''-P1,P4-tetraphosphate. Mol Cell Biochem.; 74: 17-20.
  • Swarbrick JD, Bashtannyk T, Maksel D, Zhang X-R, Blackburn GM, Gayler KR, Gooley PR. (2000) The three- dimensional structure of the nudix enzyme diadenosine tetraphosphate hydrolase from Lupinus angustifolius L. J Mol Biol.; 302: 1165-77.
  • Tagaya M, Fukui T. (1986) Modification of lactate dehydrogenase by pyridoxal phosphate and adenosine polyphosphopyridoxal. Biochemistry.; 25: 2958-64.
  • Tarussova NB, Osipova TI, Purygin PP, Yakimova IA. (1986) The synthesis of P1,P3-bis(5'-adenosyl)triphosphate and P1,P4-bis(5'-adenosyl)tetraphosphate and its phosphonate analogue with the use of carbonyl derivatives of nitrogen- containing heterocycles. Bioorg Khim.; 12: 404-7. (in Russian, abstract in English).
  • Tarussova NB, Shumiyanzeva VV, Krylov AC, Karpeisky MYa, Khomutov RM. (1983) Organophosphorous analogs of biologically active compounds. XII. Synthesis and properties of diadenosine tetraphosphate and its phosphonate analogs. Bioorg Khim.; 9: 838-43. (in Russian, abstract in English).
  • Theoclitou M-E, El-Thaher TSH, Miller AD. (1994) Enzymatic synthesis of diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) analogues by stress protein LysU. J Chem Soc Chem Commun.; 659-61.
  • VanDerLijn P, Barrio JR, Leonard NJ. (1979) Inhibition of adenylate kinase by P^1-(lin-benzo-5'-adenosyl)-P4-(5'- adenosyl)tetra-phosphate and P1-(lin-benzo-5'-adenosyl)-P5-(5'-adenosyl)pentaphosphate. Biochemistry.; 18: 5557-61.
  • Verspohl EJ, Blackburn GM, Hohmeier N, Hagemann J, Lempka M. (2003) Synthetic, nondegradable diadenosine polyphosphates and diinosine polyphosphates: their effects on insulin-secreting cells and cultured vascular smooth muscle cells. J Med Chem.; 46: 1554-62.
  • Victorova L, Sosunov V, Skoblov A, Shipytsin A, Krayevsky A. (1999) New substrates of DNA polymerases. FEBS Lett.; 453: 6-10.
  • Vogel PD, Cross RL. (1991) Adenine nucleotide-binding sites on mitochondrial FrATPase; evidence for an adenylate kinase-like orientation of catalytic and noncatalytic sites. J Biol Chem.; 266: 6101-5.
  • Vollmayer P, Clair T, Goding JW, Sano K, Servos J, Zimmermann H. (2003) Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatases/phosphodiesterases. Eur J Biochem.; 270: 2971-8.
  • Walkowiak B, Baraniak J, Cierniewski CzS, Stec W. (2002) Inhibition of ADP-triggered blood platelet aggregation by diadenosine polyphosphate analogues. Bioorg Med Chem Lett.; 12: 1959-62.
  • Wang D, Shatkin AJ. (1984) Synthesis of Gp4N and Gp3N compounds by guanylyltransferase from encysted embryos of the brine shrimp Artemia. Nucleic Acids Res.; 12: 2303-15.
  • Wierzchowski J, Sierakowska H, Shugar D. (1985) Continuous fluorimetric assay of nucleotide pyrophosphatase. Kinetics, inhibitors, and extension to dinucleoside oligophosphatases. Biochim Biophys Acta.; 828: 109-15.
  • Yagami T, Tagaya M, Fukui T. (1988) Adenosine di-, tri- and tetraphosphopyridoxals modify the same lysyl residue at the ATP-binding site in adenylate kinase. FEBSLett.; 229: 261-4.
  • Zamecnik PC, Stephenson ML, Janeway CM, Randerath K. (1966) Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem Biophys Res Commun.; 24: 91-7.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-14c81b6d-3cc3-4a46-8776-1712f192a9a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.