PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 3 |

Tytuł artykułu

Effects of extremely low frequency magnetic field on the parameters of oxidative stress in heart

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Increasing production of free radicals in organisms is one of the putative mechanisms by which a extremely low frequency magnetic field (ELF-MF) may affect biological systems. The present study was designated to assess if ELF-MF applied in the magnetotherapy, affects generation of reactive oxygen species (ROS) in heart tissue and antioxidant capacity of plasma according to its working time. The experiments were performed on 3 groups of animals: group I - control; group II - exposed to 40 Hz, 7 mT, 30 min/day for 14 days (this field is commonly applied in magnetotherapy); group III - exposed to 40 Hz, 7 mT, 60 min/day for 14 days. Control rats were housed in a separate room without exposure to ELF-MF. Immediately after the last exposure, blood was taken from the tail vein and hearts were removed under anesthesia. The effect of the exposure to ELF-MF on oxidative stress was assessed on the basis of the measurements of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), total free sulphydryl groups (-SH groups) and reduced glutathione (GSH) concentrations in heart homogenates. The total antioxidant capacity of plasma was measured using ferric reducing ability method (FRAP). Exposure to ELF-MF (40 Hz, 7 mT, 30 min/day for 2 weeks) did not significantly alter tissue TBARS, H2O2, total free -SH groups, reduced glutathione (GSH) and total antioxidant capacity of plasma. By contrast, ELF-MF with the same frequency and induction but used for 60 min/day for 14 days caused significant increase in TBARS and H2O2 concentration (P<0.01) and decrease in the concentration of GSH (P<0.05) and total free -SH groups in heart homogenates. Moreover, exposure of rats to ELF-MF (40 Hz, 7 mT, 60 min/day for 2 weeks) resulted in the decrease of plasma antioxidant capacity. Our results indicate that effects of ELF-MF on ROS generation in the heart tissue and antioxidant capacity of plasma depend on its working time.

Wydawca

-

Rocznik

Tom

61

Numer

3

Opis fizyczny

p.333-338,fig.,ref.

Twórcy

autor
  • Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
autor
autor

Bibliografia

  • Kula B, Sobczak A, Kluska R. Effects of static and ELF magnetic fields on free-radical processes in rat liver and kidney. Electron Magnetobiol 2000; 19: 99-105.
  • Lupke M, Rollwitz J, Simko M. Cell activiting capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blond-derived monocytes and in Mono Mac 6 cells. Free Radic Res 2004; 38: 985-993.
  • Jelenkovic A, Janac B, Pesic V, Jovanovic DM, Vasiljevic I, Prolic Z. Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull 2006; 68: 355-360.
  • Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH. Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicol Environ Safety 2008; 71: 895-902.
  • Raggi F, Vallesi G, Rufini S, Gizzi S, Ercolani E, Rossi R. ELF magnetic therapy and oxidative balance. Electromag Biol Med 2008; 27: 325-339.
  • Rollwitz J, Lupke M, Simko M. Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages. Biochim Biophys Acta 2004; 1674: 231-238.
  • Lee BC, Jong H-M, Lim JK, et al. Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J Photochem Photobiol B 2004; 73: 43-48.
  • Yokus B, Cakir DU, Akdag MZ, Sert C, Mete N. Oxidative DNA damage in rats exposed to extremely low frequency electromagnetic fields. Free Radic Res 2005; 39: 317-323.
  • Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994; 65: 27-33.
  • Sieron A, Cieslar G, Biniszkiewicz T. Therapy with use of ELF variable magnetic fields- a new possibility in the treatment of diabetes? Diabetol Dosw Klin 2003; 3: 299-306.
  • Pasek J, Pasek T, Herba E, et al. Magnetotherapy in the treatment of viral conjunctivitis and karatitis. Wiad Lek 2008; 61: 288-290.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82: 70-71.
  • Benzie JF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996; 239: 70-76.
  • Ciejka E, Goraca A. Influence of low magnetic field on lipid peroxidation. Pol Merk Lek 2008; 24: 106-108.
  • Arguelles S, Garcia S, Maldonaldo M, Machado A, Ayala A. Do the serum oxidative stress biomarkers provide a reasonable index of the general oxidative stress status. Biochim Biophys Acta 2004; 1674: 251-259.
  • Singh S, Kaur M, Khanduja KL, Mittal PK. Exposure to 50 Hz electromagnetic field induces changes in the antioxidant defense system and inhibits lipid peroxidation in mice. Electro- and Magnetobiology 1999; 18: 7-14.
  • Akdag MZ, Dasdag S, Aksen F, Isik B, Yilmaz F. Effect of ELF magnetic fields on lipid peroxidation, sperm count, p53, and trace elements. Med Sci Monit 2006; 12: BR366-BR371.
  • Di Loreto S, Falone S, Caracciolo V, et al. Fifty hertz extremely low-frequency magnetic field expose elicits redox and tropic response in rat cortical neurons. J Cell Physiol 2009; 219: 334-343.
  • vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R. Extremely low frequency electromagnetic field enhances human kerationocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol 2008; 158: 1189-1196.
  • Kaszuba-Zwoinska J, Ciecko-Michalska I, Madroszkiewicz D, et al. Magnetic field anti-inflammatory effects in Crohn's desease depends upon viability and cytokine profile of the immune competent cells. J Physiol Pharmacol 2008; 59: 177-187.
  • Zwirska-Korczala K, Jochem J, Adamczyk-Sowa M, et al. Effect of extremely low frequency electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes- an in vitro study. J Physiol Pharmacol 2005; 56(Suppl 6): 101-108.
  • Coskun S, Balabanli, Canseven A, Seyhan N. Effects of continuous and intermittent magnetic fields on oxidative parameters in vivo. Neurochem Res 2009; 34: 238-243.
  • Ott M, Govadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis 2007; 12: 913-929.
  • Di Mascio P, Murphy ME, Sies H. Antioxidant defense system. The role of caretenoids, tocopherols and thiols. Am J Clin Nutr 1991; 53: 194S-200S.
  • Bediz CS, Baltaci AK, Mogulkoc R, Oztekin E. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J Exp Med 2006; 208: 133-140.
  • Zmyslony M, Rajkowska E, Mamrot P, Politanski P, Jajte J. The effect of weak 50 Hz magnetic fields on the number of free oxygen radicals in rat lymphocytes in vitro. Bioelectromagnetics 2004; 25: 607-612.
  • Cheknev SB. Active oxygen metabolites in provision and control of natural cytotoxic reactions. Vestn Ross Akad Med Nauk 1999; 2: 10-15.
  • Viola HM, Arthur PG, Hool LC. Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. Circ Res 2007; 100: 1036-1044.
  • Canseven AG, Coskun S, Syhan N. Effects of various extremely low frequency magnetic fields on the free radical processes, natural antioxidant system and respiratory burst system activities in the heart and liver tissues. Indian J Biochem Biophys 2008; 45: 326-31.
  • Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol 1998; 55: 1747-1758.
  • Lu SC. Regulation of glutathione synthesis. Mol Aspects Med 2009; 30: 42-59.
  • Goraca A, Piechota A, Huk-Kolega H. Effect of alpha-lipoic acid on LPS-induced oxidative stress in the heart. J Physiol Pharmacol 2009; 60: 61-68.
  • Penna C, Mognetti B, Tullio F, et al. The platelet activating factor triggers preconditioning-like cardioprotective effect via mitochondrial K-ATP channels and redox-sensible signaling. J Physiol Pharmacol 2008; 59: 47-54.
  • Ziomber A, Juszczak K, Kaszuba-Zwoinska J, et al. Magnetically induced vagus nerve stimulation and feeding behaviour in rats. J Physiol Pharmacol 2009; 60: 71-77.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-146008d5-49af-4c48-9581-15534904d8dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.