PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 3 |

Tytuł artykułu

Energy minimization of globular proteins with solvent effects included. Comparison of empirical solvation energy terms and explicit water treatment

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of an empirical solvation energy term on energy minimization of ribonuclease Tl was established using different sets of Atomic Solvation Pa­rameters. The results are compared to minimization in vacuo and in a 10 A water shell. The best solvent model as judged from the comparison to the crystal structure was an empirical solvation potential derived from free energies of transfer of amino-acid side-chain analogues from vapour to water. The use of this model causes, however, energy and gradient oscillations, which make it inapplicable with standard protocols of molecular dynamics simulations. The empirical solvation model which was found by other authors (von Freyberg et al., 1993, J. Mol. Biol. 233, 275-292) to give good results in the NMR structure refinement led to distortions of the ribonuclease native structure. The model based on statistical analysis of crystal structures did not perform better than minimization in vacuo.

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.549-556,fig.

Twórcy

autor
  • Polish Academy of Sciences, A.Pawinskiego 5a, 02-106 Warsaw, Poland

Bibliografia

  • 1. Kauzmann, W. (1959) Some factors in the interpretation of protein denaturation. Adv. Prot. Chem. 14, 1-63.
  • 2. Dill, K.A. (1990) Dominant forces in protein folding. Biochemistry 29, 7133-7155.
  • 3. Daggett, V. & Levitt, M. (1993) Realistic simulations of native-protein dynamics in so­lution and beyond. Annu. Rev. Biophys. Bio- mol. Struct. 22, 353-380.
  • 4. Eisenberg, D. & McLachlan, A.D. (1986) Sol­vation energy in protein folding and binding. Nature 319, 199-203.
  • 5. Richmond, T.J. (1984) Solvent accessible sur­face area and excluded volume in proteins. Analytical equations for overlapping spheres and implications for the hydrophobic effect.. J. Mol. Biol. 178, 63-89.
  • 6. LeGrand, S.M. & Mere, K.M. (1993) Rapid boolean approximation to molecular surface areas via the use of boolean logic and look-up tables. J. Comp. Cfiem. 14, 349-352.
  • 7. Vila. J., Williams, R.L., Vasquez, M. & Scher- aga, H.A. (1991) Empirical solvation models can be used to differentiate native from near- native conformations of bovine pancreatic trypsin inhibitor. Proteins Struct. Fund. Genet. 10, 199-218.
  • 8. Williams, R.L., Vila, J., Perrot, G. & Scher- aga, H.A. (1992) Empirical solvation models in the context of conformational energy searches: Application to bovine pancreatic trypsin inhibitor. Proteins Struct. Funct. Genet. 14, 110-119.
  • 9. Ooi, T., Ootobake, M., Nemethy, G. & Scher- aga, 11. A. (1987) Accessible surface areas as a measure of the thermodynamic parameters of hydratation of peptides. Proc. Natl. Acad. Sci. U.S.A. 84, 3086-3090.
  • 10. Wesson, L. & Eisenberg, D. (1992) Atomic solvation parameters applied to molecular dy­namics of proteins in solution. Protein Sci. 1, 227-235.
  • 11. Schiffer, C., Caldwell, J.W., Stroud. R.M. & Kollmann, P.A. (1992) Inclusion of solvation free energy term with molecular mechanics energy: Alanyl dipeptide as a test case. Pro­tein Sci. 1, 396-400.
  • 12. von Freyberg, B., Richmond, T.J. & Braun, W. (1993) Surface area included in energy refine­ment of proteins. A comparative study of atomic solvation parameters, c/. Mol. Biol. 233. 275-292.
  • 13. Delarue, . & Koehl, P. (1995) Atomic envi­ronment energies in proteins defined from statistics of accessible and contact surface areas. J. Mol. Biol. 249, 675-690.
  • 14. Sippl, M.J. (1990) Calculation of conforma­tional ensembles from potential of mean force. An approach to the knowledge-based predic­tion of local structures in globular proteins. J. Mol. Biol. 213, 859-883.
  • 15. Fraternali, F. & van Gunsteren, W.F. (1996) An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution. J. Mol. Biol. 256. 939-948.
  • 16. Horton, N. & Lewis, M. (1992) Calculation of the free energy of association for protein com­plexes. Protein Sci. 1, 169-181.
  • 17. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977) The protein data bank: A computer- based archival file for macromolecular struc­tures. J. Mol. Biol. 112, 535-542.
  • 18. Maple, J.R., Dinur. U. & Hagler, A.T. (1988) Derivation of force fields for molecular me­chanics and dynamics from ab initio energy surfaces. Proc. Natl. Acad. Sci. U.S.A. 85, 5350-5354.
  • 19. Martinez-Oyanedel, J., Choe, H.-W., Heine- mann, U. & Saenger, W. (1991) Ribonuclease Ti with free recognition and catalytic site: Crystal structure analysis at 1.5 A resolution. J. Mol. Biol. 222, 335-352.
  • 20. Pace, C.N., Heinemann, U., Hahn, U. & Saenger, W. (1991) Ribonuclease Tl: Struc­ture, function and stability. Angew. Chem. Int. Edn. Engl. 30, 343-360.
  • 21. Shrake, A. & Rupley, J.A., (1973) Environ­ment and exposure to solvent of protein at­oms. Lysozyme and insulin. J. Mol. Biol. 79, 351-371.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-10f8781e-ab8d-40a8-8d2c-b115f12310a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.