PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 63 | 11 |

Tytuł artykułu

Zmiany w komorkach mikroorganizmow pod wplywem wysokiego cisnienia

Warianty tytułu

EN
High pressure induced changes in microorganisms' cells

Języki publikacji

PL

Abstrakty

EN
The mechanisms responsible for microorganisms' death under high pressure conditions are still not clear. Pressure in the range of 5-40 MPa does not usually lead to death of cells, but causes changes in their shape, dimensions and motility. In the case of some microorganisms, mainly of moulds and yeast, elongation of the cell may cause injury in the cell wall and therefore lead to their death. Changes in the cytoplasmic membrane permeability are considered to be the main reason for pressure-induced inactivation of microorganisms. According to some authors, inactivation of key enzymes leads to the inhibition of metabolic processes and the death of microorganisms. Pressure influences ribosomes and the biosynthesis of proteins. Some bacteria may be adapted to elevated pressure by regulation of protein expression. Among the new proteins, so-called PIPs (pressure-induced proteins), are identified heat-shock proteins and cold-shock proteins.

Wydawca

-

Rocznik

Tom

63

Numer

11

Opis fizyczny

s.1285-1290,bibliogr.

Twórcy

  • Politechnika Gdanska, ul.Narutowicza 11/12, 80-952 Gdansk

Bibliografia

  • 1.Abe F., Kato Ch., Horikoshi K.: Pressure-regulated metabolism in microorganisms. Trends Microbiol. 1999, 7, 447-453.
  • 2.Allen E. E., Bartlett D. H.: FabF is required for piezoregulation of cis-vaccenic acid levels and piezophilic growth of the deep-sea bacterium Photobacterium profundum strain SS9. J. Bacteriol. 2000, 182, 1264-1271.
  • 3.Allen E. E., Facciotti D., Bartlett D. H.: Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl. Environ. Microbiol. 1999, 65, 1710-1720.
  • 4.Bartlett D. H.: Microbial life at high pressures. Sci. Progr. 1992, 76, 479-496.
  • 5.Bartlett D. H.: Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 2002, 1595, 367-381.
  • 6.Bartlett D. H., Kato C., Horikoshi K.: High pressure influences on gene and protein expression. Res. Microbiol. 1995, 146, 697-706.
  • 7.Bartlett D. H., Welch T. J.: ompH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9. J. Bacteriol. 1995, 177, 1008-1016.
  • 8.Bidle K. A., Bartlett D. H.: RecD function is required for high-pressure growth of a deep-sea bacterium. J. Bacteriol. 1999, 181, 2330-2337.
  • 9.Chilukuri L. N., Forest P. A. G., Bartlett D. H.: High pressure modulation of Escherichia coli DNA gyrase activity. Biochem. Biophys. Res. Commun. 1997, 239, 552-556.
  • 10.Groß M., Jaenickie R.: Pressure-induced dissociation of tight couple ribosomes. FEBS Lett. 1990, 267, 239-241.
  • 11.Hashizume C., Kimura K., Hayashi R.: Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures. Biosci. Biotechnol. Biochem. 1995, 59, 1455-1458.
  • 12.Hendrickx M., Ludikhuyze L., Van den Broeck I., Weemaes C.: Effects of high pressure on enzymes related to food quality. Food Sci. Technol. 1998, 9, 197-203.
  • 13.Hoover D. G., Metrick C., Papineau A. M., Farkas D. F., Knorr D.: Biological effects of high hydrostatic pressure on food microorganisms. Food Technol. 1989, 43, 99-107.
  • 14.Iwahashi H., Obuchi K., Fujii S., Komatsu Y.: Effect of temperature on the role of Hsp104 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett. 1997, 416, 1-5.
  • 15.Iwahashi H., Obuchi K., Nwaka S.: Evidence for contribution of neutral trehalase in barotolerance of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2000, 66, 5182-5185.
  • 16.Landau J. V.: Protein and nucleic acid synthesis in Escherichia coli: Pressure and temperature effects. Science 1969, 153, 1273-1274.
  • 17.Lullien-Pellerin V., Balny C.: High-pressure as a tool to study some proteins properties: conformational modification, activity and oligomeric dissociation. Innov. Food Sci. Emerg. Technol. 2002, 3, 209-221.
  • 18.Macdonald A. G.: Effects of high hydrostatic pressure on natural and artificial membranes. High Press. Biotechnol. Hayashi R., Heremans K., Masson R. (ed.), Colloque INSERM John Libbey Eurotext Ltd. 1992, 224, 67-75.
  • 19.Mackey B. M.: Injured bacteria, [in:] Lund B. M., Baird-Parker A., Gould G. M. (eds): The Microbiological Safety and Quality of Food. Aspen Publishers, Inc., Gaithersburg, MD 2000, 315-341.
  • 20.Mackey B. M., Forestiere K., Isaacs N. S., Stenning R., Brooker B.: The effect of high hydrostatic pressure on Salmonella thompson and Listeria monocytogenes examined by electron microscopy. Lett. Appl. Microbiol. 1994, 19, 429-432.
  • 21.Mozhaev V. V., Heremans K., Frank J., Mansson P., Balny C.: Exploiting the effects of high hydrostatic pressure in biotechnological applications. Trends Biotechnol. 1994, 12, 493-501.
  • 22.Nakasone K., Ikegami A., Kato C., Usami R., Horikoshi K.: Analysis of cis-elements upstream of the pressure-regulated operon in the deep-sea barophilic bacterium Shewanella violacea strain DSS12. FEMS Microbiol. Lett. 1999, 176, 351-356.
  • 23.Nakasone K., Ikegami A., Kato C., Usami R., Horikoshi K.: Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 1998, 2, 149-154.
  • 24.Niven G. W., Miles Ch. A., Mackey B. M.: The effects of hydrostatic pressure on ribosome conformation in Escherichia coli an in vitro study using differential scanning calorimetry. Microbiol. 1999, 145, 419-425.
  • 25.Pagan R., Mackey B.: Relationship between membrane damage and cell death in pressure treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl. Environ. Microbiol. 2000, 66, 2829-2834.
  • 26.Ritz M., Freulet M., Orange N., Federighi M.: Effects of high hydrostatic pressure on membrane proteins of Salmonella typhimurium. Int. J. Food Microbiol. 2000, 55, 115-119.
  • 27.Robey M., Benito A., Hutson R. H., Pascual C., Park S. F., Mackey B. M.: Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Appl. Environ. Microbiol. 2001, 67, 4901-4907.
  • 28.Smelt J. P. P. M.: Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 1998, 9, 152-158.
  • 29.Ulmer H. M., Ganzle M. G., Vogel R. F.: Effects of high hydrostatic pressure on survival and metabolic activity of Lactobacillus plantarum TMW1460. Appl. Environ. Microbiol. 2000, 66, 3966-3973.
  • 30.Welch T. J., Bartlett D. H.: Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 1998, 27, 977-985.
  • 31.Welch T. J., Farewell A., Neidhardt F. C., Bartlett D. H.: Stress response of Escherichia coli to elevated hydrostatic pressure. J. Bacteriol. 1993, 175, 7170-7177.
  • 32.Wemekamp-Kamphuis H. H., Karatzas A. K., Wouters J. A., Abee T.: Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure. Appl. Environ. Microbiol. 2002, 68, 456-463.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-105012ae-8eb2-46d9-99cd-ba4ccf03b4ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.