PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 4 |

Tytuł artykułu

Functional role of rRNAs in plant translation system tested with antisense strategy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
There are regions in rRNA which are evolutionary conserved and exposed on ribosomal surface. We selected in plant material (Lupinus luteus) two of them: the α-sarcin domain of 26S rRNA (L-rRNA) and C loop of 5S rRNA, to be further investigated using antisense oligomers as research tools. We found inhibition of the model polypeptide biosynthesis (up to 80%) due to specific hybridization of oligomers addressed to α-sarcin domain and loop C. Based on our results we present the evidence for the key role played by these regions of rRNAs during protein biosynthesis in plant system. According to our hypothesis, conformational changes of these two regions are synchronised and cooperative during transition of pre- to post-translocation state of the ribosome. The correlation of structure and activity of rRNA domains in translation is shown.

Wydawca

-

Rocznik

Tom

45

Numer

4

Opis fizyczny

p.1053-1066,fig.

Twórcy

autor
  • Polish Academy of Sciences, Z.Noskowskiego 12-14, 61-704 Poznan, Poland
autor
autor

Bibliografia

  • Barciszewska, M.Z., Lorenz, S., Erdmann, V.A. & Barciszewski, J. (1990) Structural analysis of plant ribosomal 5S rRNAs. Visualisation of novel tertiary interactions by cleavage of lu­pin and wheat 5S rRNA with ribonuclease H. Biochim. Biophys. Acta 1087. 68-72.
  • Bohun, E. & Twardowski, T. (1994) The a-sarcin domain of large ribosomal RNA is a strategic- fragment for plant ribosome function. J. Plant Physiol 143, 650-669.
  • Brigotti, M., Lorenzetti, R., Denaro, M., Caricelli, D., Montanaro, L. & Sperti, S. (1993) Oligonu­cleotides complementary to the a-sarcin do­main of 28S rRNA inhibit cell-free protein synthesis. Biochem. Mol. Biol. Int. 31, 897-903.
  • Dontsova, O., Tishkov, V., Dokudovskaya, S., Bog- danov, A., Döring, T., Rinke-Appel, J., Thamm, S., Greuer, B. & Brimacombe, R. (1994) Stem loop IV of 5S rRNA lies close to peptidyltransferase center. Proc. Natl Acad. Sei. U.S.A. 91, 4125-4129.
  • Endo, Y., Gülck, A., Chan, Y. L., Tsurugi, K. & Wool, I. (1990) RNA-protein interaction: An analysis with RNA oligonucleotides of the rec­ognition by a-sarcin of a ribosomal domain critical for function. J. Biol. Chem. 265, 2216-2222.
  • Erdmann, V.A. (1976) Structure and function of 5S and 5.8S RNA. frog. Nucl Acid Res. Mol Biol. 18, 45-90.
  • Evstafieva, A.G., Shatsky, I.N., Bogdanov, A.A. & Vasiliev, V.D. (1985) Topography of RNA in the ribosome: Location of the 5S RNA resi­dues A39 and U40 on the central protuber­ance of the 50S subunit. FEBS Lett 185. 57-62.
  • Guttel, R.R.R., Schnare, M.N. & Gray, M.W. (1992) A compilation of large subunit (23S rRNA and 23S-like) ribosomal RNA structure. Nucleic Acids Res. 20 (Suppl.), 2095-2109.
  • Guttel, R.R., Gray, M.W. & Schnare, M.N. (1993) A composition of large subunit (23S and 23S- like ribosomal RNA) structures: 1993. Nucleic Acids Res. 21. 3055-3074.
  • Guttell, R.R. & ?ox, G.E. (1988) A compilation of large subunit RNA sequences presented in structural format. Nucleic Acids Res. 16 (Suppl.), rl?5-r269.
  • Hartmann, R.K., Vogel, D.M., Walker, R.T. & Erd- mann, V.A. (1988) In vitro incorporation of eu- bacterial, archaebacterial and eucaryotic 5S rRNAs into large ribosomal subunits of Bacil- lus stearotkermopkilus. Nucleic Acids Res. 16, 3511-3524.
  • Hausner, T.-P., Atmadja, J. & Nierhaus, K.H. (1987) Evidence that the G 2661 region of 23S rRNA is located at the ribosomal binding site of both elongation factors. Biochimie 69, 911-923.
  • HIBIO (1991) Gen/Protein Data Base: Hitachi Software Engeneering Co., Ltd. Japan., Hi­tachi Software Engeneering America, Ltd.
  • Hill, W.E. & Tassanakajohn, A. (1987) Probing ri- bosome structure using short oligodeoxyribo- nucleotides: The question of resolution. Bio­chimie 69, 1071-1080.
  • Holmberg, L., Melander, Y. & Nygard, O. (1992) Ribosome-bound eucaryotic elongation factor 2 protects 5S rRNA from modification. J. Biol Chem. 267, 21906-21910.
  • Holmberg, L. & Nygard, O. (1994) Interaction sites of ribosomes-bound eucaryotic elonga­tion factor 2 in 18S and 28S rRNA. Biochemis­try 33. 15159-15167.
  • Höpfl, E., Ludwig, J., Schleifer, K.H. & Larsen, N. (1989) The 23S ribosomal RNA higher-order structure of Pseudomonas cepacia and other prokaryotes. Eur. J. Biochem. 185, 355-364.
  • Joachimiak, J., Nalaskowska, M., Barciszewska, M., Barciszewki, J. & Mashkova, T. (1990) Higher plant 5S rRNAs share common secon­dary and tertiary structure. A new three do­mains model. Int. J. Macromol 12, 321-327.
  • Lim, V., Venclovas, C., Spirin, A., Brimacombe, R., Mitchell, P. & Muller, F. (1992) How are tRNAs and mRNA arranged in the ribosome? An attempt to correlate the stereochemistry of the tRNA-mRNA interaction with con­straints imposed by the ribosomal topo- graghy. Nucieic Acids Res. 20. 2627-2637.
  • Lodmell, J.S., Tapprich, W.E. & Hill, W.E. (1993) Evidence for a conformational change in the exit site in the Escherichia coli ribosome upon tRNA binding. Biochemistry 32. 4067-4072.
  • Meyer, H.-A., Triana-Alonso, F., Spahn, C., Twar­dowski, T., Sobkiewicz, A. & Nierhaus, K.H. (1996) Effects of antisense DNA against the a- sarcin stem-loop structure of the ribosomal 23S rRNA. Nucleic Acid* Res. 24,3996-4002.
  • Miller, S.P. & Bodley, J.W. (1991) a-Sarcin cleav­age of ribosomal RNA is inhibited by the bind­ing of elongation factor G or thiostrepton to the ribosome. Nucleic Acids Res. 19, 1657- 1660.
  • Moazed, D.J., Robertson, J.M. & Noller, H.F. (1988) Interaction of EFG and EFTu with con­served loop in 23S rRNA. Nature 334, 362-364.
  • Nawrot, M. (1994) Synthetic oligonucleotides causes dissociation of ribosomes to the subunits. Sobkiewicz, A. (1994) Evidence for plant ribosomal 5S rRNA involvement in elon­gation of polypeptide chain biosynthesis. Książczak, L. (1994) Participation of the com­plex (5S*L5) in protein biosynthesis. Bohun, E. (1994) a-Sarcin domain of large ribosomal RNA is the strategic fragment for plant ribo­somal fragment. The 1-st French-Polish gradu­ate students workshop, Poznań, Poland.
  • Nierhaus, K.H., Schilling-Bartetzko, S. & Twar­dowski, T. (1992) Two main states of the elon­gating ribosome and the role of the «-sarcin stem-loop structure of 23S rRNA. Biochimie 74, 403-410.
  • Noller, H.F., Kop. J.A., Wheaton, V., Brosius, J., Gutell, R.R., Kopylov, A.M., Dohme, F., Herr, W., Stahl, D.A., Gupta, R. & Woese, C.R. (1981) Secondary structure model for 23S ri­bosomal RNA. Nucleic Acids Res. 9. 6167- 6189.
  • NoUer, H.F., Hoffarth. V. & Zimniak, L. (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256, 1416-1419.
  • Noller, H.F., Moazed, D., Stern, S., Powers, T., Al­len, P.N., Robertson, J.M.. Weiser. B. & Tri- man, K. (1990) Structure of rRNA and its functional interactions in translation; in The Ribosome: Structure, Function and Evolution (Hill, W.E., Dahlberg, A., Garrett, R.A., Moore, P.B., Schlessinger, D. & Warner, J.R., eds.) pp. 73-92, American Society for Micro­biology, Washington D.C.
  • Nomura, M. & Erdmann, V.A. (1970) Reconstitu­tion of 50S ribosomal subunits from dissoci­ated molecular components. Nature 228, 744-748.
  • Nygard, 0. & Nilsson, L. (1987) The ribosomal binding site for eukaryotic elongation factor EF-2 contains 5S ribosomal RNA. Biochim. Biophys. Acta 908, 46-53.
  • Osborn, R.W. & Hartey, M.R. (1990) Dual effects of the ricin A chain on protein synthesis in rabbit reticulocyte lysate. Inhibition of initia­tion and translation. Eur. J. Biochem. 193, 401-407.
  • Raue, H.A., Musters, W., Rutgers, C.A., Van't Riet, J. & Planta, R.J. (1990) rRNA: From structure to function; in The Ribosome: Struc­ture, Function and Evolution (Hill, W.E., Dahl- berg, A., Garrett, R.A., Moore, P.B., Schless­inger, D. & Warner, J.R., eds.) pp. 217-235, American Society for Microbiology, Washing­ton D.C.
  • Rheinberger, H.-J., Geigenrauller, M., Wedde, M. & Nierhaus, K.H. (1988) Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding. Methods Enzymol. 164, 658-670.
  • Rheinberger, H.-J., Schilling, S. & Nierhaus, K.H. (1983) The ribosomal elongation cycle: tRNA binding translocation and tRNA relase. Eur. J. Biochem. 134, 421-428.
  • Saxena, S.K. & Ackerman, E.J. (1990) Microinjec­tion oligonucleotides complementary to a-sa­rcin loop of 28S RNA abolish protein synthe­sis in Xenopus oocytes. J. Biol Chem. 265, 3263-3269.
  • Schindler, D.G. & Davies, J.E. (1977) Specific cleavage of ribosomal RNA caused by alpha sarcin. Nucleic Acids Res. 4, 1097-1110.
  • Shatsky, I.N., Evstafieva. A.G., Bystrova, T.F., Bogdanov, A.A. & Vasiliev, V.D. (1980) Topog­raphy of RNA in the ribosome: Location of the 3' end of the 5S RNA on the central protuber­ance of the 50S subunit. FEBS Lett. 121, 97-100.
  • Twardowski, T. & Legocki, A.B. (1973) Purifica­tion and some properties of EF2 from wheat germ. Biochim. Biophys. Acta 324, 171-183.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-0ede3bb1-03f4-47a6-b865-9918df75b770
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.