PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 52 | 2 |

Tytuł artykułu

Geny szlaku metabolicznego karotenoidow i ich wykorzystanie w inzynierii genetycznej

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Carotenoids play an essential role especially in human nutrition. Single or a few carotenoid genes have been identified for different organisms including plants. There are some informations in the literature about regulation of carotenoid biosynthesis. While analyzing the complexity of carotenoid metabolic pathway, it is clearly visible that our know ledge about genetic background of carotenoid changes is still fragmentary. This publication presents the review of techniques used for identification of carotenoid biosynthesis genes and examples of genes identified by those techniques. We also described the regulation mechanisms of carotenoid biosynthesis in plants and the practical use of carotenoid genes in genetic engineering.

Wydawca

-

Rocznik

Tom

52

Numer

2

Opis fizyczny

s.15-30,rys.,bibliogr.

Twórcy

  • Instytut Hodowli i Aklimatyzacji Roslin, Oddzial Mlochow, ul.Platanowa 19, 05-831 Mlochow

Bibliografia

  • [1] Aggelis A., John I., Karvouni Z., Grierson D. 1997. Characterizations of two cDNA clones for mRNA expressed during ripening of melon (Cucumis melo L.) fruits. Plant. Mol. Biol. 33: 313-322.
  • [2] Al-Babili S., V. Linting J., Haubruck H., Beyer P. 1996. A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplast is Hsp 70-complexed and competent for flavinylation, membrane association and enzymatic activation. The Plant Journal 9(5): 601-612.
  • [3] Al-Babili S., Hugueney P., Scheldz M., Welsh R., Frohnmeyer H., Laule O., Beyer P. 2000. Identification of a novel gene coding for neoxanthin sythase from Solanum tuberosum. FEBS Letters 485: 168-172.
  • [4] Albrecht M., Sandmann G. 1994. Light-stimulated caroteniod biosynthesis during transformation of maize etioplasts is regulated by increased activity of isopentenyl pyrophosphate isomerase. Plant Physiology 105: 529-534.
  • [5] Arigoni D., Sagner S., Latzel C., Eisenreich W., Bacher A., Zenk M. 1997. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearragement. Proc. Natl. Acad. Sci. USA 94: 10600-10605.
  • [6] Badillo A., Steppuhn J., Deruere J., Camara B., Kuntz M. 1995. Structure of functional geranyl geranyl pyrophosphate synthase gene from Capsicum annuum. Plant. Mol. Biol. 27: 425-428.
  • [7] Bartley G.E., Viitanen P.V., Pecker I., Chamovitz D., Hirschberg J., Scolnik P.A. 1991. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway. Proc. Natl. Acad. Sci. USA 88: 6532-6536.
  • [8] Bartley G.E., Scolnik P.A. 1993. cDNA cloning, expression during development, and genome mapping of psy2, a second tomato gene encoding phytoene synthase. J. Biol. Chem. 268: 25718-25721.
  • [9] Bartley G.E., Scolnik P.A. 1993. Phytoene desaturase from Arabidopsis. The Plant Physiology 103: 1475.
  • [10] Bartley G.E., Scolnik P.A. 1995. Plant carotenoids: pigments for photoprotection, visual attractant and human health. The Plant Cell 7: 1027-1038.
  • [11] Bird C.R., Ray J.A., Fletcher J.D., Boniwell J.M., Bird A.S., Teulieres C., Blain I., Bramlay P.M., Schuch W. 1991. Using antisense RNA to study gene function: inhibition ofcarotenoid biosynthesis in transgenic tomatoes. Bio/Technology 9: 635-639.
  • [12] Blanc V. M., Pichersky E. 1995. Nucleotide sequence of a Clarkia bewerii cDNA clone of Ipil, a gene encoding isopentenyl pyrophosphate isomerase. Plant Physiology 108: 855-856.
  • [13] Bouvier F., Hugueney P., D'harlingue A., Kuntz M., Camara B. 1994. Xsanthophyll biosynthesis in chromoplast: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoids into ketokarotenoids. The Plant Journal 6: 45-54.
  • [14] Bouvier F., Backhaus R.A., Camara B. 1998. Induction and control of chromoplast-spectfic carotenoid genes by oxidative stress. J. Biol. Chem. 273: 30651-30659.
  • [16] Buishand J.G., Gabelman W.H. 1980. Studies of the inheritance of root color and carotenoid content in red x yellow and red x white crosses of carrot, Daucus carota L. Euphytica 29: 241-260.
  • [17] Burkhardt P.K., Beyer P., Wünn J., Klöti A., Armstrong G.A., Schledz M., Von Lintig J., Potrykus I. 1997. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Nacissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamine A biosynthesis. The Plant Journal 11(5): 1071-1078.
  • [18] Busch M., Seuter A., Rüdiger H. 2002. Functional analysis of the early Steps of carotenoid biosynthesis in tobacco. The Plant Physiology 128: 439-453.
  • [19] Byrne P.F., Mc Mullen M.D., Snook M.E., Musket T.A., Theuri J.M., Widstrom N.W., Wiseman B.R., Coe E.H. 1996. Quantutative trait loci and metabolic pathways: Genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc. Natl. Acad. Sci. USA 93: 8022-8025.
  • [20] Chen F.Q., Foolad M.R., Hyman J., St. Clair D.A., Beelaman R.B. 1999. Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentim x L. pimpinellifolium cross and camparison of QTLs across tomato species. Molecular Breeding 5: 283-299.
  • [21] Cunningham F.X., Chamovitz D., Missava N., Gantt E., Hirschberg J. 1993. Clonningand functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyze the biosynthesis of ß-carotene. FEBS Lett. 328: 130-138.
  • [22] Cunningham F.X., Pogson B., Sun Z.R., Mcdonald K.A., Della Penna D., Gantt E.1996. Functional analysis of ß and c lycopene cyclase enzymes of Arabidopsis reveals a mechamsm for control of cyclic carotenoid formation. The Plant Cell 8; 1613-1626.
  • [23] Cunningham F.X., Gantt E. 1998. Carotenoid biosynthesis in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 49: 557-583.
  • [24] Fray R.G., Wallace A., Fraser P.D., Valero D., Hedden P., Bramley P.M., Grierson D. 1995. Constitutive expression of fruit phytoene synthase gene in transgenic tomatoes caused dwarfism by redirecting metabolites from the gibberellin pathway. Plant Journal 8: 693-701.
  • [25] Heber D. 2000. Colorful cancer prevention: α-carotene, lycopene and lung cancer. American Journal of Clinical Nutrition 72: 901-902.
  • [261 Hirschberg J. 2001. Carotenoid biosynthesis in flowering plants. Current Opinion in 27 Plant Biology 4: 210-218.
  • [27] Holden J.M., Eldrige A.L., Beecher G.R., Buzzard I.M., Bhagwat S.A., Davis C.S., Douglas L.W.Gebhardt S.E., Haytowitz D.B., Schakel S. 1999. Carotenoid content of U.S. foods: An update of the database. J. Food Comp. Anal. 12: 169-196.
  • [28] Huh J.H., Kang B.C., Nahm S.H., Kim S., Ha K.S., Lee M.H., Kim B.D. 2001. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum ssp.). Theor. Appl. Genet. 102: 524-530.
  • [29] Iglesias C., Mayer J., Chavez L., Calle F. 1997. Genetic potential I stability of carotene content in cassava roots. Euphytica 94: 367-373.
  • [30] Isler O. 1971.Carotenoids as natural coloring matters. W: Carotenoids. Birkhauser Verlag Basel und Stuttgart: 12-55.
  • [31] Karvouni Z., John I., Taylor J.E., Watson C.F., Turner A.J., Grierson D. 1995. Isolation nd characterization of a melon cDNA clone encoding phytoene synthase. Plant Molecular Biology 27: 1153-1162.
  • [32] Kim I., Ko K., Kim C., Chung K. 2001. Isolation and charactenzation of cDNAs encoding ß-carotene hydroxylase in Citrus. The Plant Science 161: 1005-1010.
  • [33] Kubicki B., Walczak B. 1976. Variation and heritability of ß-carotene content on some cultivars of the Cucurbita species. Genet. Pol. 17: 531-544.
  • [34] Kuntz M., Römer S., Suire C., Hugueney P., Weil J.H., Schantz R., Camara B. 1992. Identyfication of a cDNA for the plastid-located geranyl geranyl pyrophosphate synthase from Capsicum annuum: correlative increace in enzyme activity and transcript level during fruit ripening. The Plant Journal 2: 25-34.
  • [35] Lefebvere V., Badillo A., Daubeze A.M., Balattes A., Ferriere C., Kuntz M., Cmara B., Palloix A. 1998. Genetic linkage between the y locus and the capsanthin-capsorubin synthase gene: a discriminating tool of red and yellow fruited peppers. W: materiałach z X Eucarpia Meeting on Genetics and Breeding of Capsicum & Eggplant, 1998-Avignon, France: 253-256.
  • [36] Li Z.H., Matthews P.D., Burr B., Wurtzel E.T. 1996. Cloning and characterization of maiz cDNA encoding phytoene desaturase, an enzyme of carotenoid biosynthetic pathway. Plant Molecular Biology 30: 269-279.
  • [37] Lintig J., Welsch R., Bonk M., Giuliano G., Batschauer A., Kleining H. 1997. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediate by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant Journal 12: 625-634.
  • [38] Lois L.M., Rodriguez-Concepcion M., Gallego F., Campos N., Boronat A. 2000. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant Journal 22: 503-513.
  • [39] Lotan T., Hirschberg J. 1995. Cloning and expression in Escherichia coli of gene encoding b-C-4-oxygenase that converts ß-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett. 364: 125-128.
  • [40] Mann V., Harker M., Pecker I., Hirschberg J. 2000. Metabolie engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 18: 888-892.
  • [41] Niemirowicz-Szczytt K., Korzeniewska A. 1992. Nowe półkrzaczaste odmiany dyni olbrzymiej. Ogrodnictwo 2: 20-21.
  • [42] Niemirowicz-Szczytt K., Korzeniewska A., Gałecka T. 1996. Nowe odmiany dyni olbrzymiej (Cucurbita maxima DUCH.) o podwyższonej zawartości suchej masy, białka i karotenoidów. Materiały Konferencyjne, Zjazdu Hodowców Roślin Ogrodniczych, Kraków 1996: 48-51.
  • [43] Okada K., Saito T., Nakagawa T., Kawamukai M., Kamiya Y. 2000. Five geranylgeranyl diphosphate synthase expressed in different organs are localize into tree subcellular compartments in Arabodopsis. The Plant Physiology 122: 1045-1056.
  • [44] Paris H. S. 1994. Genetic analysis and breeding of pumpkin and squash for high carotene content. W: Modern methods in plant analysis. Springer-Verlag Berlin Heidelberg 16: 94-115.
  • [45] Paris H. S., Burger Y. 1989. Complementary genes for fruit striping in summer squash. J. Hered. 80: 490-493.
  • [46] Pecker I., Gabbay R., Cunningham F.X., Hirschberg J. 1996. Cloning and characterisation of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expresswn during fruit ripening. Plant Mol. Biol. 30: 807-819.
  • [47] Pecker I., Chamovitz D., Linden H., Sandmann G., Hirschberg J. 2000. A single polypeptide catalyzing the conversion of phytoene to ? - carotene is transcriptionally regulated during tomato fruit ripening. Proc. Nat. Acad. Sci. USA 89: 4962-4966.
  • [48] Römer S., Fraser P.D., Kiano J.W., Shipton C.A., Misawa N., Schuch W., Bramley P.M., 2000. Elevation of the provitamin A contemnt of transgenic tomato plants. at. Biotechnol. 18: 666-669.
  • [49] Ronen G., Cohen M., Zamir D., Hirschberg J. 1999. regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant delta. Plant Journal 341-351.
  • [50] Ronen G., Carmel-Goren L., Zamir D., Hirschberg J. 2000. An alternative pathway to ß-carotene fonnation in plant chloroplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA 97: 11102-11107.
  • [51] Rosati C., Aquilani R., Dharmapuri S., Pallara P., Marusic C., Tavazza R., Bouvier F., Camara B., Giuliano G. 2000. Metabolie engineering of beta-carotene and lycopene content in tomato fiuit. Plant Journal 24: 413-420.
  • [52] Rutkowska U. 1981. Witamina A i prowitamina A. W: Wybrane metody badania składu i wartości odżywczej żywności. PZWL Warszawa: 302-331.
  • [53] Sandmann G. 2001. Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends in Plant Science 6(1): 14-17.
  • [54] Santos C.A.F., Simon P. W. 2002. QTL analyses reveal clustered loci for accumulation of major prowitamin A carotenes and lycopene in carrot roots. Molecular Genetics and Genomics 286: 122-129.
  • [55] Schaffer A.A., Boyer C.D. 1984. Effect of gene B on fruit developnemt in Cucurbita pepo. Am. Soc. Hortic. Sci. 109: 432-437.
  • [56] Schledz M., Al-Babili S., Von Liting J., Haubruck H., Rabbani S., Kleining H., Beyer P. 1996. Phytoene synthase from Nareissus pseudonarcissus: functional expression, galactolipid requinnent, topological distribution in chromoplasts and induction during flowering. Plant Journal 10: 781-792.
  • [57] Scolnik P.A., Bartleyg. E. 1995. Nucleotide sequence of putative geranylgeranyl pyrophosphate synthase (Gen Bank accession no. L40577) from Arabidopsis (PGR 95-018). Plant Physiology 108: 1343.
  • [58] Scolnik P.A., Bartleyg. E. 1996. Two more members of Arabidopsis geranylgeranyl pyrophosphate synthase family (PGR 96-014). Plant Physiology 110: 1435.
  • [59] Shewmaker C.K., Sheehy J.A., Daley M., Colburn S., Ke D.Y. 1999. Seed specific overexpression of phytoene synthase: increase in carotenoid and other metabohc effects. The Plant Journal 20: 401-412.
  • [60] Smith M.W., Yamaguchi S., Ait-Ali T., Kamiya Y. 1998. The first step of gibberellin hiosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate synthases encoded by differentially regulated genes. Plant Physiology 118: 1411-1419.
  • [61] Stommel J. R., Haynes K. G. 1994. Inheritance of beta carotene content in the wild tomato species Lycopersicon cheesmanii. The Journal of Heredity 85: 401-404.
  • [62] Sztangret J., Korzeniewska A., Niemirowicz-Szczytt K. 2001. Ocena plonowania oraz zawartości suchej masy i związków karotenoidowych w nowych mieszańcach dyni olbrzymiej (Cucurbita maxima Duch.). Folia Horticulturae Ann. 13/1A: 437-443.
  • [63] Sztangret _J., Korzeniewska A., Lewandowska M., Niemirowicz-Szczytt K., 2003. Identfikacja markerów związków karotenoidowych w owocach dyni olbrzymiej - analiza RAPD. Folia Horticulturae Supl. l: 129-132.
  • [64] Sztangret J. 2003. Podstawy analizy genetycznej zawartości związków karotenoidowych w owocach dyni olbrzymiej (Cucurbita maxima DUCH.). Perspektywy wykorzystania mieszańców F1. Rozprawa doktorska. SGGW. Warszawa 2003.
  • [65] Tan B. C., Schwartz S. H., Zeevaart J. A., Mccarty D. R. 1997. Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. USA 94: 12235-12240.
  • [66] Tanksley S.D. 1993. Mapping polygenes. Annual Review of Genetics. 27. 205-233.
  • [67] Thorup T.A., Tanyolac B., Livingstone K.D., Popovsky S., Paran I. Jahn M. 2000. Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. 4(21): 11192-11197.
  • [68] Tomes M. L., Quackenbush F. W., Mc Quistan M. 1954. Modification and dominance of the gene governing formation of high concentration of beta-carotene in the tomato. Genetics 39: 810-817.
  • [69] Tomes M., Mark L. 1967. The competitive effect of the beta- and delta-carotene genes on alpha or beta-ionone ring formation in the tomato. Genetics 56: 227-232.
  • [70] Umiel N., Gabelman W.H. 1972. Inheritance of root color and carotenoid synthesis in carrot, Daucus carota L. orange vs. red. J. Amer. Soc. Hort. Sci. 97: 453-460.
  • [71] Ye X., Al Babili S., Kloti S., Zhang J., Lucca P., Beyer P., Potrykus I. 2000. Engineering of provitamin A (ß-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305.
  • [72] Young N.D. 1993. Applications of DNA genetic markers to the study of plant growth and development. Plant Grown Regulation 12: 229-236.
  • [73] Zhang Y., Stommel J. R. 2000. RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence ß-carotene accumulation in fruit of tomato (Lycopersicon esculentum MILL.). Theor. Appl. Genet. 100: 368-375.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-0adf6d0b-43a4-4483-b9ea-5eac89b36e9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.