PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 12 | 3 |

Tytuł artykułu

Protozoans prefer large and metabolically active bacteria

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of our studies was to verify the hypothesis that heterotrophic nanoflagellates (HNF) prefer large and metabolically active bacterial cells, and avoid small and inactive bacteria. Determined grazing rates on bacteria differing in sizes and metabolic activity and observed changes in bacterioplankton structure in samples with and without bacterial grazers indicated that HNF prefer large (but not too large) and actively metabolizing bacterial cells. Bacterial size fraction between 0.4 and 0.8 μm represented the majority of all grazed bacteria, i.e. 61.6±6.9 %. Grazing rates on live bacteria were 1.83 times greater than grazing rates on dead bacteria. This preferential protozoan feeding strongly affects composition and activity of bacterial communities in aquatic environments.

Wydawca

-

Rocznik

Tom

12

Numer

3

Opis fizyczny

p.325-334,fig.

Twórcy

  • University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
autor

Bibliografia

  • 1. AZAM F., FENCHEL T., FIELD J.G., GRAY J.S., MEYER-REIL A., THINGSTAD F. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257, 1983.
  • 2. KOTON-CZARNECKA M., CHRÓST R.J. Konsumpcja bakterii przez pierwotniaki w ekosystemach wodnych. Post. Mikrobiol. 40, 219, 2001.
  • 3. JÜRGENS K., GÜDE H. The potential importance of grazing-resistant bacteria in planktonic systems. Mar. Ecol. Prog. Ser. 112, 169, 1994.
  • 4. ANDERSON M.R., RIVKIN R.B. Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison. Aquat. Microb. Ecol. 25, 195, 2001.
  • 5. GONZALES J.M., IRIBERRI J., EGEA L., BARCINA I. Differential rates of digestion of bacteria by freshwater and marine phagotrophic protozoa. Appl. Environ. Microbiol. 56, 583, 1990.
  • 6. DEL GIORGIO P.A., GASOL J.M., VAQUE D., MURA P., AGUSTI S., DUARTE C.M. Bacterioplankton community structure: protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41, 1169, 1996.
  • 7. BERMAN T., KAPLAN B., CHAVA S., VINER Y., SHERR B.F., SHERR E.B. Metabolically active bacteria in Lake Kinneret. Aquat. Microb. Ecol. 23, 213, 2001.
  • 8. GASOL J.M., DEL GIORGIO P.A., MASSANA R., DUARTE C.M. Active versus inactive bacteria: size-dependence in a coastal marine plankton community. Mar. Ecol. Prog. Ser. 128, 91, 1995.
  • 9. GASOL J.M., ZWEIFEL U.L., PETERS F., FUHRMAN J.A., HÄGSTROM A. Significance of size and nucleic acid content heterogenity as measured by flow cytometry in natural plankton bacteria. Appl. Environ. Microbiol. 65, 4475, 1999.
  • 10. VAQUE D., CASAMAYOR E.O. GASOL J.M. Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA content. Aquat. Microb. Ecol. 25, 163, 2001.
  • 11. VOSJAN J.H., VAN NOORT G.J. Enumerating nucleoid-visible marine bacterioplankton: bacterial abundance determined after storage of formalin fixed samples agrees with isopropoanol rinsing method. Aquat. Microb. Ecol. 14, 149, 1998.
  • 12. KOTON-CZARNECKA M., CHRÓST R.J. Measurement of protozoan grazing on bacteria by means of [3H-thymidine]-labelled natural assemblages of lake bacteria. Pol. J. Environ. Studies 11, 385, 2002.
  • 13. PORTER K.G., FEIG Y. The use of DAPI for identifying and counting aquatic microflora. Liomnol. Oceanogr. 25, 943, 1980.
  • 14. ZWEIFEL U.L., HÄGSTROM A. Total counts of marine bacteria include a large fraction of non-nucleoid containing “ghost”. Appl. Environ. Microbiol. 61, 2180, 1995.
  • 15. LANDRY M.R., LEHNER-FOURNIER J.M., SUNDSTROM J.A., FAGERNESS V.L., SELPH K.E. Discrimination between living and heat-killed prey by a marine zooflagellate, Paraphysomonas vestita (Stokes). J. Exp. Mar. Biol. Ecol. 146, 139, 1991.
  • 16. GEIDER R.J. Use of radiolabeled tracers in dilution grazing experiments to estimate bacterial growth and loss rates. Microb. Ecol. 17, 77, 1989.
  • 17. NYGAARD K., HESSEN D.O. Diatom kills by flagellates. Nature 367, 520, 1994.
  • 18. CHRISTAKI U., DOLAN J.R., PELEGRI S., RASSOULZADEGAN F. Consumption of picoplankton-size particles by marine ciliates – effects of physiological-state of the ciliate and particle quality. Limnol. Oceanogr. 43, 458, 1998.
  • 19. SANDERS R.W. Feeding by Cyclidium sp. (Ciliophora, Scuticociliatida) on particles of different size and surface properties. Bull. Mar. Sci. 43, 446, 1988.
  • 20. GOLDMAN J.C., CARON D.A., ANDERSEN O.K., DENNETT M.R. Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24, 231, 1985.
  • 21. LEBARON P., SERVAIS P., TROUSSELLIER M., COURTIES C., VIVES-REGO J., MUYZER G., BERNARD L., GUINDULAIN T., SCHÄFER H., STACKEBRANDT E. Changes in bacterial community structure in seawater mesocosms differing in their nutrient status. Aquat. Microb. Ecol. 19, 225, 1999. Koton-Czarnecka M., Chróst R.J. 334
  • 22. SHERR B.F., SHERR E.B., McDANIEL J. Effects of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl. Environ. Microbiol. 58, 2381, 1992.
  • 23. GONZALES J.M., SHERR E.B., SHERR B.F. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56, 583, 1990.
  • 24. ANDERSSON A., LARSSON U., HAGSTRÖM A. Size-selective grazing by microflagellate on a pelagic bacteria. Mar. Ecol. Prog. Ser. 33, 99, 1996.
  • 25. HANSEN B., HANSEN P.J., BJORNSEN P.K. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395, 1994.
  • 26. GÜDE H. The role of grazing on bacteria in plankton succession. In: Sommer U (ed) Plankton Ecology: Succession in Plankton Communities. Brock/Springer, Berlin, p 337, 1989.
  • 27. ŠIMEK K., CHRZANOWSKI T.H. Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl. Environ. Microbiol. 58, 3715, 1992.
  • 28. ANDERSEN P., FENCHEL T. Bacterivory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30, 198, 1985.
  • 29. GÜDE H. Influence of crustacean zooplankton on bacterial populations in Lake Constance. Hydrobiologia 159, 63, 1988.
  • 30. SANDERS R.W., CARON D.A., BERNINGER U.G. Relationship between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86, 1, 1992.
  • 31. JÜRGENS K., ARNDT H., ROTHHAUPT K.O. Zooplankton-mediated changes of bacterial community structure. Microb. Ecol. 27, 27, 1994.
  • 32. JÜRGENS K., STOLPE G. Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in shallow, eutrophic lake. Freshwater Biol. 33, 27, 1995.
  • 33. SOMMARUGA R., PSENNER R. Permanent presence of grazing-resistant bacteria in hypertrophic lake. Appl. Environ. Microbiol. 61, 3457, 1995.
  • 34. HAHN M.W., MOORE E.R.B., HÖFLE M.G. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Appl. Environ. Microbiol. 65, 25, 1999.
  • 35. PERNTHALER J., POSH T., ŠIMEK K., VRBA J., AMANN R., PSENNER R. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl. Environ. Microbiol. 63, 596, 1997.
  • 36. PERNTHALER J., ŠIMEK K., SATTLER B., SCHWARZENBACHER A., BOBKOVA J., PSENNER R. Short-term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. J. Plankton Res. 38, 443, 1996.
  • 37. JÜRGENS K., DEMOTT W.R. Behavioral flexibility in prey selection by bacterivorous nanoflagellates. Limnol. Oceanogr. 40, 1503, 1995.
  • 38. JÜRGENS K., ŠIMEK K. Functional response and particle size selection of Halteria cf. grandinella, a common freshwater oligotrochous ciliate. Aquat. Microb. Ecol. 22, 57, 2000.
  • 39. GOLDMAN J.C., CARON D.A. Experimental studies on an omnivorous microflagellate: Implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res. 32, 899, 1985.
  • 40. POSH T., ŠIMEK K., PERNTHALER J., NEDOMA J., SATTLER B., SONNTAG B., PSENNER R. Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community. Aquat. Microb. Ecol. 18, 235, 1999.
  • 41. BOENIGK J., ARNDT H. Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aquat. Microb. Ecol. 22, 243, 2000.
  • 42. CARON D.A. Grazing of attached bacteria by heterotrophic microflagellates. Microb. Ecol. 13, 203, 1987.
  • 43. GONZALES J.M., SHERR E.B., SHERR B.F. Differential feeding by marine flagellates on growing versus starving, and motile versus nonmotile, bacterial prey. Mar. Ecol. Prog. Ser. 102, 257, 1993.
  • 44. WALLBERG P., JONSSON P.R., JOHNSTONE R. Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystem. Aquat. Microb. Ecol. 18, 175, 1999.
  • 45. ŠIMEK K., VRBA J., PERNTHALER J., POSH T., HARTMAN P., NEDOMA J., PSENNER R. Morphological and composition shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Environ. Microbiol. 63, 587, 1997.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-04eedb14-690f-4fe4-9822-17f1cc48dfaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.