EN
The renal regulatory role of cytochrome P450 dependent metabolites of arachidonic acid (AA), vasodilator epoxyeicosatrienoic acids (EETs) and vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE), was examined in anaesthetised rats. We measured renal artery flow (RBF), cortical (CBF) and medullary (MBF) perfusion (laser-Doppler) and medullary tissue nitric oxide (NO, selective electrode), after non-selective inhibition of CYP-450 pathway with 1-aminobenzotriazole (ABT, 10 mg/kg i.v.) or after selective inhibition of 20-HETE synthesis with HET0016 (Taisho Co, Yoshino-cho, Japan), infused into renal artery at 0.3 mg/kg/h or into renal medulla at rates increasing from 0.15 to 1.5 mg/kg/h. ABT caused significant (by 13.7%) decrease in RBF without changing MBF. Renal arterial HET0016 increased MBF (not RBF or CBF) from 152±12 to 174±12 perfusion units (+16%, P<0.001), while medullary tissue nitric oxide was significantly increased (P<0.001). After renal medullary HET0016, renal perfusion indices were significantly higher than after HET0016 solvent (ß-cyclodextrin). Total renal blood flow seems to be under vasodilator control of EETs whereas renal medullary perfusion under tonic suppression by 20-HETE. The data document, for the first in the whole kidney studies, the functional antagonism of 20-HETE and NO.