The values of kinetic parameters Ea (activation energy) and A (preexponential factor) were evaluated for different kinetic models using data from thermogravimetric (TGA) curves obtained in isothermal and polythermal conditions. It was found that diffuse kinetic models D3 and D4 aproximated the experimental data better than first order reaction model F1. The values of kinetic parameters for D3 and D4 models evaluated from both types of TG curves were comparable.
The August Cieszkowski Agricultural University of Poznan, Wojska Polskiego 38-42, 60-627 Poznan, Poland
Bibliografia
Agrawal R. K., 1985. Compensation effect in the pyrolysis of cellulosic materials. Thermochim. Acta 90, 347-351.
Agrawal R. K., 1985. On the use of the Arrhenius equation to describe cellulose and wood pyrolysis. Thermochim. Acta 91,343-349.
Alves S. S., Figueiredo J. L., 1988. Pyrolysis kinetics of lignocellulose materialsby multistage isothermal thermogravimetry. J. Anal. Appl. Pyrolysis 13, 123-134.
Arnold M., Veress G. E., Paulik J, Paulik F., 1982. A critical reflection upon the application of the Arrhenius Model to non-isothermal thermogravimetric curves. ThermochIm. Acta 52, 67-81.
Bilbao R., Murillo M. B., Millera A., 1992. Angular and radial profiles in the thermal decomposition of wood. Thermochim. Acta 200, 401-414.
Bonnefoy F., Gilot P., Prado G., 1993. A three-dimensional model for the determination of kinetic data from the pyrolysis of beech wood. J. Anal. Appl. Pyrolysis 25, 387-394.
Garn P.D., 1978: Kinetic parameters. Special review. J. Thermal Anal.13, 581-593.
Herrera A., Soria S., Araya de C. P., 1986. A kinetic study on the thermal decomposition of six hardwood species. Holz a. Roh-u. Werkstoff 44, 357-360.
Hirata T., Abe H., 1973. Pyrolyses of wood and cellulose, and effect of inorganic salts on the pyrolyses, measured by thermogravimetric and differential thgermal analysis techniques. I. Kinetics of the pyrolyses of untreated wood and cellulose in vacuo. Mokuzai Gakkaishi 9, 451-459.
Koufopanos C. A., Maschio G., Lucchesi A., 1989. Kinetic modeling of the pyrolysis of biomass and biomass components. Can. J. Chem. Eng. 67, 75-84.
Koufopanos C. A., Papayannakos N., 1991. Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can. J. Chem. Eng. 69, 907-915.
Malecki A., 1996. Analiza kinetyki reakcji chemicznych zachodzących w warunkach politermicznych zarys problemu [Analysis of kinetics reaction in polythermal conditions- in outline]. Mat. Konf. Szkola Analizy Termicznej, Zakopane, 15-19.04, 71-94 [in Polish].
Pysiak J., Pacewska B., 1996. Przykłady interpretacji kinetyki i mechanizmu rozkłady termicznego [The examples of interpretation of kinetic mechanism of thermal degradation]. Mat. Konf. Szkola Analizy Termicznej, Zakopane, 15-19.04, 161-175 [in Polish].
Sestak J., Berggren G., 1971. Study of the kinetics of the mechanism of solid - state reactions at increasing temperatures. Thermochim. Acta 3: 1-12.
Williams P. T., Besler S., 1993. Thermogravimetric analysis of the components of biomass. Advances in thermochemical biomass conversion. Edited by A.V.Bridgwater in Blackie Academic & Professional.
Zakrzewski R., 2001. Niektóre aspekty termicznego rozkładu drewna i wybranych surowców lignocelulozowych [Some aspects of thermal degradation of wood and some lignocellulose materials]. Rocz. AR Pozn. Dissertations 324 [in Polish].
Zaror C. A., Pyle D. L., 1986. Competitive reactions model for the pyrolysis of lignocellulose: a critical study. J. Anal. Appl. Pyrolysis 10, 1-12.