PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 76 |

Tytuł artykułu

Tree somatic embryogenesis in science and forestry

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Somatic embryogenesis is the latest, and potentially the most efficient, method for the vegetative micropropagation of plants. Over the past three decades, numerous laboratory studies have investigated somatic embryogenesis of forest trees, yielding positive results for a number of economically important tree species. The first test trials were run and plantations were planted with interior spruce in the 90s by CellFor Inc. (Canada). However, at the beginning of the XXI century, the program to produce spruce and Douglas fir somatic seedlings was stopped for economic reasons. Thus, currently no operational program is ongoing except on a small scale in New Brunswick. In order to integrate somatic embryogenesis technology into operational reforestation programs, the production costs of forest tree somatic seedlings needs to be reduced, and the awareness of foresters and forest landowners that the material obtained through somatic embryogenesis is valuable needs to be increased. This awareness would enable implementation of this technology on a large scale for production and forest management throughout Europe including Poland. In this review, the importance of somatic embryogenesis in scientific research and in global and European forestry is presented. Our main aims are to provide basic information on the challenges in researching somatic embryogenesis of forest trees and to raise interest in this tree propagation technique in both scientists and foresters.

Wydawca

-

Czasopismo

Rocznik

Tom

76

Opis fizyczny

p.105-116,fig.,ref.

Twórcy

  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62‑035 Kornik, Poland
autor
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62‑035 Kornik, Poland

Bibliografia

  • Adams GW, Kunze HA, McCartney A, Millican S & Park YS (2016) An industrial perspective on the use of advanced reforestation stock technologies: Vegetative Propagation of Forest Trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, pp. 323–334.
  • Ahuja MR (2009) Transgene stability and dispersal in forest trees. Trees 23: 1125–1135.
  • Aidun CK & Egertsdotter EMU (2012) Fluidics-based automation of clonal propagation via somatic embryogenesis: SE-Fluidics System: Proceedings of the IUFRO Working Party 2.09.02: “Somatic Embryogenesis of Trees” conference on “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management” June, 25–28 2012, Brno, Czech Republic, S3–3.
  • Aronen T (2016) From lab to field – current state of somatic embryogenesis in Scots pine: Vegetative Propagation of Forest Trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, pp. 515–527.
  • Bajaj YPS (1995) Somatic embryogenesis and its applications for crop improvement: Biotechnology in Agriculture and Forestry. vol. 30, Somatic embryogenesis and synthetic seeds I (ed. by YPS Bajaj) Springer-Verlag, Berlin Heidelberg, pp. 221–233.
  • Ballester A, Corredoira E & Vieitez AM (2016) Limitations of somatic embryogenesis in hardwood trees: Vegetative propagation of forest trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, Seoul, Korea, pp. 56–74.
  • Bonga JM (2016) Conifer clonal propagation in tree improvement programs: Vegetative propagation of forest trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, Seoul, Korea, pp. 3–31.
  • Bozhkov PV, Filonova LH & von Arnold S (2002) A key developmental switch during Norway spruce somatic embryogenesis is induced by a withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnology and Bioengineering 77: 658–667.
  • Chmielarz P (1999) Somatic embryogenesis of Quercus robur L. and cryopreservation of somatic embryos in liquid nitrogen: Mitteilungen aus der Biologischen Bundesanstalt für Land-Forstwirtschaft. Berlin-Dahlem, 365. Fortschritte bei de Lagerungstechnologie von Eichensaatgut. Braunschweig. Parey Buchverlag Berlin, pp. 49–59.
  • Chmielarz P, Grenier-de March G & de Boucaud MT (2005) Cryopreservation of Quercus robur L. embryogenic calli. CryoLetters 26: 349–355.
  • Corredoira E, San-José MC, Vieitez AM & Ballester A (2007) Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell, Tissue and Organ Culture 91: 281–288.
  • Corredoira E, San-José MC & Vieitez AM (2012) Induction of somatic embryogenesis from different explants of shoot cultures derived from young Quercus alba trees. Trees 26: 881–891.
  • Cyr DR (1999) Cryopreservation of embryogenic cultures of conifers and its application to clonal forestry: Somatic embryogenesis in woody plants (ed. by SM Jain, PK Gupta & RJ Newton) Kluwer Academic Publishers, Netherlands, pp. 239–261.
  • Dai J, Vendrame WA & Merkle SA (2004) Enhancing the productivity of hybrid yellow-poplar and hybrid sweetgum embryogenic cultures. In Vitro Cellular & Developmental Biology - Plant 40: 376–383.
  • DeVerno LL, Park YS, Bonga JM, Barrett JD & Simpson C (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce (Picea glauca (Moench) Voss.). Plant Cell Reports 18: 948–953.
  • Ducos JP, Gibault E, Broun P & Lambot C (2011) Coffee propagation by somatic embryogenesis at Nestlé R&D Center-Tours. Proceedings of the IUFRO Working Party 2.09.02 conference, Suwon, Republic of Korea, pp. 72–77.
  • Ellis D (1995) Genetic transformation of somatic embryos: Biotechnology in agriculture and forestry, vol. 30. Somatic embryogenesis and synthetic seeds I (ed. by YPS Bajaj), Springer-Verlag, Berlin Heidelberg, pp. 207–220.
  • Ewald D, Hu J & Yang M (2006) Transgenic forest trees in China: Tree transgenesis: recent developments (ed. by M Fladung & D Ewald) Springer, Berlin, pp. 25–45.
  • Find JI, Charity JA, Grace LJ, Kristensen MMMH, Krogstrup P & Walter C (2005) Stable genetic transformation of embryogenic cultures of Abies nordmanniana (Nordman fir) and regeneration of transgenic plants. In Vitro Cellular & Developmental Biology–Plant 41: 725–730.
  • Find JI (2016) Towards industrial production of tree varieties through somatic embryogenesis and other vegetative propagation technologies: Nordmanns fir (Abies nordmanniana (Steven) Spach) – From research laboratory to production: Vegetative Propagation of Forest Trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, pp. 528–537.
  • Finkle BJ, Zavala ME & Ulrich JM (1985) Cryopreservation of Plant Cells and Organs. Cryoprotective compounds in the viable freezing of plant tissues: Cryopreservation of plant cells and organs (ed. by KK Kartha) CRC Press, Boca Raton, FL, pp. 75–113.
  • Gale S, John A, Harding K & Benson EE (2008) Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: a comparison of vitrification protocols. CryoLetters 29: 135–144.
  • Goh D & Monteuuis O (2016) Teak: Vegetative Propagation of Forest Trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, pp. 425–440.
  • Grossnickle SC (2011) Tissue culture of conifer seedlings – 20 years on: Viewed through the lens of seedling quality. USDA Forest Service Proceedings RMRS-P-65: 139–146.
  • Grossnickle SC & Major JE (1994) Interior spruce seedlings compared with emblings produced from somatic embryogenesis. III. Physiological response and morphological development on a reforestation site. Canadian Journal of Forest Research 24: 1397–1407.
  • Grossnickle SC & Sutton BCS (1999) Applications of biotechnology for forest regeneration. New Forests 17: 213–226.
  • Grossnickle SC & Folk RS (2005) Stock quality assessment of a somatic interior spruce seedlot. Northern Journal of Applied Forestry 22: 197–202.
  • Grossnickle SC & Folk R (2007) Field performance potential of a somatic interior spruce seedlot. New Forests 34: 51–72.
  • Grossnickle SC & Pait J (2008) Somatic embryogenesis tissue culture for applying varietal forestry to conifer species. USDA Forest Service Proceedings: RMRS-P-57: 135–139.
  • Gupta PK & Timmis R (2005) Mass propagation of conifer species in liquid cultures-progress towards commercialization. Plant Cell, Tissue and Organ Culture 81: 339–346.
  • Guzman-Garcia E, Bradaï F & Sánchez-Romero C (2013) Cryopreservation of avocado embryogenic cultures using the droplet-vitrification method. Acta Physiologiae Plantarum 35: 183–193.
  • Häggman H, Aronen T & Ryynänen LA (2000) Cryopreservation of embryogenic cultures of conifers: Somatic embryogenesis in woody plants, vol. 6 (ed. by SM Jain, PK Gupta & RJ Newton) Kluwer Academic Publishers, pp. 707–728.
  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25: 3–22.
  • Hazubska-Przybył T & Bojarczuk K (2008) Somatic embryogenesis of selected spruce species (Picea abies, P. omorika, P. pungens ‘Glauca’ and P. breweriana). Acta Societatis Botanicorum Poloniae 77: 189–199.
  • Hazubska-Przybył T, Chmielarz P, Michalak M & Bojarczuk K (2010) Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell, Tissue and Organ Culture 102: 35–44.
  • Hazubska-Przybył T, Chmielarz P, Michalak M, Dering M & Bojarczuk K (2013) Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell, Tissue and Organ Culture 113: 303–313.
  • Hazubska-Przybył T, Chmielarz P & Bojarczuk K (2015) In vitro responses of various explants of Fagus sylvatica. Dendrobiology 73: 135–144.
  • Hernández I, Cuenca B, Carneros E, Alonso-Blázquez N, Ruiz M, Celestino C, Ocaña L, Alegre J & Toribio M (2011) Application of plant regeneration of selected cork oak trees by somatic embryogenesis to implement multivarietal forestry for cork production. Tree and Forestry Science and Biotechnology 5: 19–26.
  • Högberg KA & Varis S (2016) Vegetative propagation of Norway spruce: Experiments and present situation in Sweden and Finland: Vegetative Propagation of Forest Trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, pp. 538–550.
  • Klimaszewska K, Cardou MB, Cyr DR & Sutton BCS (2000) Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cellular & Developmental Biology – Plant 36: 279–286.
  • Klimaszewska K, Lachance D, Pelletier G, Lelu MA & Sèguin A (2001) Regeneration of transgenic Picea glauca, P. Mariana and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology–Plant 37: 748–755.Klimaszewska K, Trontin JF, Becwar M, Devillard C, Park YS & Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree and Forestry Science and Biotechnology 1: 11–25.
  • Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS & Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree and Forestry Science and Biotechnology 1: 11–25.
  • Klimaszewska K, Overton C, Stewart D & Rutledge RG (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233: 635–647.
  • Kong L & von Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell, Tissue and Organ Culture 106: 115–125.
  • Kotlarski S, Plitta-Michalak B, Barciszewska MZ, Barciszewski J, Tylkowski T, Sobczak M, Pilarz P, Jaworska K, Litkowiec M, Lewandowski A, Michalak M & Chmielarz P (2015) The possibilities of preserving the genetic resources of the oldest pedunculate oaks (Quercus robur L.) in Poland. Proceedings of the national scientific conference Biology and technology in the trees and shrubs seed multiplication, Puszczykowo, Poland, pp. 72–73.
  • Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A & Häggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: Recovery, maturation and genetic fidelity. Cryobiology 63: 17–25.
  • Krajňáková J, Bertolini A, Gömöry D, Vianello A & Häggman H (2013) Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell lines. In Vitro Cellular & Developmental Biology – Plant 49: 560–571.
  • Lane A (2004) Attack of the clones: somatic embryogenesis in forestry. BioTech Journal 2: 13–17.
  • Latkowska MJ, Kvaalen H & Appelgren M (2000) Genotype dependent blue and red light inhibition of the proliferation of the embryogenic tissue of Norway spruce. In Vitro Cellular & Developmental Biology – Plant 36: 57–60.
  • Lelu-Walter MA, Bernier-Cardou M & Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Reports 25: 767–776.
  • Lelu-Walter MA, Pâques L, Harvenght L & Thompson D (2010) Somatic Embryogenesis of Forest Trees in Europe: What’s Going on? An Overview. Proceedings of the IUFRO Working Party 2.09.02 conference, Suwon, Republic of Korea, pp. 97–99.
  • Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M & Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genetics & Genomes 9.
  • Lelu-Walter MA, Teyssier C, Guérin V, Pâques LE (2016) Vegetative propagation of larch species: somatic embryogenesis improvement towards its integration in breeding programs: Vegetative Propagation of Forest Trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, pp. 551–571.
  • Liao YK & Juan IP (2015) Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. Journal of Forest Research 20: 114–124.
  • Lin YJ & Zhang QF (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports 23: 540–547.
  • Lopes T, Pinto G, Loureiro J, Costa A & Santos C (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiology 26: 1145–1152.
  • Lulsdorf MM, Tautorus TE, Kikcio SI, Bethune TD & Dunstan DI (1993) Germination of encapsulated embryos of interior spruce (Picea glauca engelmanni complex) and black spruce (Picea mariana Mill.). Plant Cell Reports 12: 385–389.
  • Malabadi RB & Nataraja K (2007) Production of transgenic plants via Agrobacterium-mediated genetic transformation in Pinus wallichiana (Himalayan blue pine). Transgenic Plant Journal 1: 376–383.
  • Mallón R, Covelo P & Vieitez AM (2012) Improving secondary embryogenesis in Quercus robur: Application of temporary immersion for mass propagation. Trees – Structure and Function 26: 731–741.
  • Michalak M, Plitta BP, Kotlarski S & Chmielarz P (2014) Cryopreservation – is it safe? Possible changes in cryostored plant genetic resources.Sylwan 158: 795–800.Naujoks G (2003) Somatic embryogenesis in beech (Fagus sylvatica). Biologia 58: 83–87.
  • Nawrot-Chorabik K (2012) Somatic embryogenesis in forest plants. (ed. by K Sato) Embryogenesis. InTech 20: 423–446.
  • Nigro SA, Makunga NP, Jones NB & van Staden J (2004) A biolistic approach towards producing transgenic Pinus patula embryonal suspensor masses. Plant Growth Regulation 44: 187–197.
  • Olszewska A (2000) Micropropagation and somatic embryogenesis of oak Quercus sp. Mikrorozmnażanie i embriogeneza somatyczna dębu – Quercus sp. University of Life Science Poznań. PhD thesis.
  • Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Annals of Forest Science 59: 651–656.
  • Park YS & Bonga JM (2010) Application of somatic embryogenesis in forest management and research. Proceedings of the IUFRO Working Party 2.09.02 conference, Suwon, Republic of Korea, pp. 3–8.
  • Park YS, Barret JD & Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control and stability of cryopreserved clones. In Vitro Cell Developmental Biology – Plant 34: 231–239.
  • Pérez M, Bueno MA, Escalona M, Toorop P, Rodríguez R & Cañal MJ (2013) Temporary immersion systems (RITA®) for the improvement of cork oak somatic embryogenic culture proliferation and somatic embryo production. Trees 27: 1277–1284.
  • Pinto G, Correia S, Corredoira E, Ballester A, Correia B, Neves L & Canhoto J (2016) In vitro culture of Eucalyptus: where we stand? Vegetative propagation of forest trees (ed. by YS Park, JM Bonga & HK Moon) National Institute of Forest Science, Seoul, Korea, pp. 441–462.
  • Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA & Maynard CA (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell, Tissue and Organ Culture 84: 69–79.
  • Pullman GS & Bucalo K (2014) Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New Forests 25: 353–377.
  • Roberts DR, Lazaroff WR & Webster FB (1991) Interaction between maturation and high relative humidity treatments and their effects on germination of Sitka spruce somatic embryos. Journal of Plant Physiology 138: 1–6.
  • Salaj T, Moravčíková J, Grec-Niqet L & Salaj J (2005) Stable transformation of embryogenic tissues of Pinus nigra Arn. using a biolistic method. Biotechnology Letters 27: 899–903.
  • Salaj T, Panis B, Swennen R & Salaj J (2007) Cryopreservation of embryogenic tissues of Pinus nigra Arn. by a slow freezing method. CryoLetters 28: 69–76.
  • San-José MC, Corredoira E, Martínez MT, Vidal N, Valladares S, Mallón R & Vieitez AM (2010) Shoot apex explants for induction of somatic embryogenesis in mature Quercus robur L. trees. Plant Cell Reports 29: 661–671.
  • San-José MC, Corredoira E, Oliveira H & Santos C (2015) Cryopreservation of somatic embryos of Alnus glutinosa (L.) Gaertn. and confirmation of ploidy stability by flow cytometry. Plant Cell, Tissue and Organ Culture 123: 489–499.
  • Shekhawat UKS, Ganapathi TR, Srinivas L, Bapat VA & Rathore TS (2008) Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. Plant Cell, Tissue and Organ Culture 92: 261–271.
  • South DB (2009) Economics of clonal forestry: Vegetative propagation and deployment of varieties – the scope for Europe. Treebreedex, Liverpool, England.
  • Sutton WRJ (1999) The need for planted forests and the example of Radiata pine. New Forests 17: 95–109.
  • Sutton BCS, Attree SA, El-Kassaby YA, Grossnickle SC & Polonenko DR (2004) 17 Commercialization of somatic embryogenesis for plantation forestry: Plantation Forest Biotechnology for the 21st Century (ed. by C Walter & M Carson) Research Signpost, pp. 275–301.
  • Szczygieł K & Sułkowska M (1996) Using isoenzyme analysis for estimation somaclonal variation during somatic embryogenesis of some Polish provenances of Norway spruce (Picea abies (L.) Karst.). Proceedings of the 10th FESPP conference. From molecular to the plant: an integrated approach, Florencja, Italy. Plant Physiology and Biochemistry (Special issue): 41.
  • Szczygieł K, Hazubska-Przybył T & Bojarczuk K (2007) Somatic embryogenesis of selected coniferous tree species of the genera Picea, Abies and Larix. Acta Societatis Botanicorum Poloniae 76: 7–15.
  • Szczygieł K & Hazubska-Przybył T (2010) Światowe tendencje wykorzystania metod wegetatywnego rozmnażania drzew. Leśne Prace Badawcze 71: 208–211.
  • Tereso S, Miguel C, Zoglauer K, Valle-Piquera C & Oliveira MM (2006) Stable Agrobacterium-mediated transformation of embryogenic tissues from Pinus pinaster Portuguese genotypes. Plant Growth Regulation 50: 57–68.
  • Thompson D (2014) Challenges for the large-scale propagation of forest trees by somatic embryogenesis – a review. Proceedings of the Third International Conference of the IUFRO unit 2.09.02 on “Woody Plant Production Integrating Genetic and Vegetative Propagation Technologies”, Vitoria-Gasteiz, Spain, pp. 81–91.
  • Titon M, Xavier A & Otoni WC (2006) Clonal propagation of Eucalyptus grandis using the mini-cutting and micro-cutting techniques. Scienta Forestalis 71: 109–117.
  • Toribio M, Celestino C & Molinas M (2005) Cork oak, Quercus suber L.: Protocol for somatic embryogenesis in woody plants. (ed. by SM Jain & PK Gupta), Springer-Dordrecht, Netherlands, pp. 445–457.
  • Toribio M, Fernández C, Celestino C, Martínez MT, San-José MC & Vieitez AM (2004) Somatic embryogenesis in mature Quercus robur trees. Plant Cell, Tissue and Organ Culture 76: 283–287.
  • Vieitez JF, Ballester A & Vieitez AM (1992) Somatic embryogenesis and plantlet regeneration from cell suspension cultures of Fagus sylvatica L. Plant Cell Reports 11: 609–613.
  • Vieitez AM, Corredoira E, Martínez MT, San-José MC, Sánchez C, Valladares S, Vidal N & Ballester A (2012) Application of biotechnological tools to Quercus improvement. European Journal of Forest Research 131: 519–539.
  • Vidal N, Mallon R, Valladares S, Meijomın AM & Vieitez AM (2010) Regeneration of transgenic plants by Agrobacterium-mediated transformation of somatic embryos of juvenile and mature Quercus robur. Plant Cell Reports 29: 1411–1422.
  • Wadenbäck J, Arnold von S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T & Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Research 17: 379–392.
  • Walter C, Grace LJ, Wagner A, White DRW, Walden AR, Donaldson SS, Hinton H, Gardner RC & Smith DR (1994) Stable transformation and regeneration of transgenic plants of Pinus radiata. Plant Cell Reports 17: 460–468.
  • Wilhelm E (2000) Somatic embryogenesis in oak (Quercus ssp.). In Vitro Cellular & Developmental Biology – Plant 36: 349–357.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-affffe46-b8f1-4d9f-9234-75436af3eb6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.