PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

Uptake and accumulation of cadmium and relative gene expression in roots of Cd-resistant Salix matsudana koidz

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salix matsudana is thought to be an ideal woody plant for use in phytoremediation programs in China. This study deals with the characterization of early responses to Cd in accumulation and its effects on other metals, and relative gene expression in roots exposed to 50 μM of Cd for 1 to 24 hours. The Cd content in roots exposed to Cd for 1, 3, 6, 12, and 24 hours of treatment was approximately 280, 587, 605, 622, and 795 μg/g DW, respectively. After 24 hours, Cd stress caused a decrease of iron (Fe) (34.1%), manganese (Mn) (60.1%), zinc (Zn) (40.7%) and calcium (Ca) (26.5%). After 24 hours of exposure, the relative expression of IRT1 was 6.7 times that of control treatment (P<0.05). A 160.8% increase was detected for the relative expression of NRAMP1 after exposure to Cd treatment for one hour. After three hours of stress, the expression of ZIP1 was 10 times that of control (P<0.05). The tolerance of plants to Cd involves gene expression, protein modification, and alterations in the coordination of major and secondary metabolites, which is a complex physiological and biochemical process.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

p.2717-2723,fig.,ref.

Twórcy

autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China
autor
  • Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, People’s Republic of China

Bibliografia

  • 1. CHOPPALA G., SAIFULLAH, BOLAN N., BIBI S., IQBAL M., RENGEL Z., KUNHIKRISHNAN A., ASHWATH N., SIK OK Y. Cellular mechanisms in higher plants governing Tolerance to Cadmium Toxicity. Crit. Rev. Plant Sci. 33, 374, 2014.
  • 2. MONTEIRO C.C., CARVALHO R.F., GRATAO P.L., CARVALHO G., TEZOTTO T., MEDICI L.O., PERES L.E.P., AZEVEDO R.A. Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environ. Experi. Bot. 71, 306, 2011.
  • 3. TOMAR P.C., LAKRA N., MISHRA S.N. Effect of cadaverine on Brassica juncea (L.) under multiple stress. Indian J. Experi. Biol. 51, 758, 2013.
  • 4. GAO F. The mystery of heavy metal pollution in farmland. China Land. 2, 14, 2014.
  • 5. CUI S., ZHOU Q., CHAO L. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ. Geol. 51, 1043, 2007.
  • 6. BI X.Y., FENG X.B., YANG Y.G., LI X.D., SHIN G.P.Y., LI F., QIU G.L., LI G.H., LIU T.Z., FU ZH.Y. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environ. Pollut. 157, 834, 2009.
  • 7. VERBRUGGEN N., HERMANS C., SCHAT H. Molecular mechanisms of metal hyeraccumulation in plants. New Phytol. 181, 759, 2009.
  • 8. HASSAN Z., AARTS M.G.M. Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ. Experi. Bot. 72, 53, 2011.
  • 9. NA G., SALT D.E. The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ. Experi. Bot. 72, 18, 2011.
  • 10. RASCIO N., NAVARI-IZZO F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180, 169, 2011.
  • 11. PENCE N.S., LARSEN P.B., EBBS S.D., LETHAM D.L.D., LASAT M.M., GARVIN D.F., EIDE D., KOCHIAN L.V. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Natl. Acad. Sci. USA. 97, 4956, 2000.
  • 12. SASAKI A., YAMAJI N., YOKOSHO K., MA J.F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell. 24, 2155, 2012.
  • 13. PARK W., AHN S.J. How do heavy metal ATPases contribute to hyperaccumulation? J. Plant Nutr. Soil Sci. 177, 121, 2014.
  • 14. BARBERON M., DUBEAUX G., KOLB C., ISONO E., ZELAZNY E., VERT G. Polarization of iron-regulated transporter 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. P. Natl. Acad. Sci. USA. 111, 8293, 2014.
  • 15. RAMESH S.A., SHIN R., EIDE D.J., SCHACHTMAN D.P. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 133, 126, 2003.
  • 16. XU X.Y., DING Z.J., CHEN L., YAN J.Y., LI G.X., ZHENG S.J. An eukaryotic translation initiation factor, AteIF_5A-2, affects cadmium accumulation and sensitivity in Arabidopsis. J. Integr. Plant Boil. 57, 848, 2015.
  • 17. CAILLIATTE R., SCHIKORA A., BRIAT J.F., MARI S., CURIE C. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell. 22, 904, 2010.
  • 18. CURIE C., ALONSO J.M., JEAN M.L., ECKER J.R., BRIAT J.F. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. J. Biochem. 347, 749, 2000.
  • 19. TAKAHASHI R., ISHIMARU Y., SENOURA T., SHIMO H., ISHIKAWA S., ARAO T., Nakanishi H, Nishizawa N.K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J. Exp. Bot. 62, 4843, 2011.
  • 20. CAILLIATTE R., LAPEYRE B., BRIAT J.F., MARI S., CURIE, C. The NRAMP6 metal transporter contributes to cadmium toxicity. J. Biochem. 422, 217, 2009.
  • 21. THOMINE S., WANG R., WARD J.M., CRAWFORD N.M., SCHROEDER J.I. Cadmium and iron transport by members of a plant metal transporters family in Arabidopsis with homology to NRAMP genes. Proc. Natl. Acad. Sci. USA. 97, 4991, 2000.
  • 22. UENO D., MILNER M., YAMAJI N., YOKOSHO K., KOYAMA E., ZAMBRANO M.C., KASKIE M., EBBS S., KOCHIAN L.V., MA J.F. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cdhyperaccumulating ecotype of Thlaspi caerulescens. Plant J. 66, 852, 2011.
  • 23. JIANG Z., QIN R., ZHANG H.H., ZOU J.H., SHI Q.Y., WANG J.R., JIANG W.S., LIU D.H. Determination of Pb genotoxic effects in Allium cepa root cells by fluorescent probe, microtubular immunofluorescence and comet assay. Plant Soil 383, 357, 2014.
  • 24. LIVAK K.J., SCHMITTGEN T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 25, 402, 2001.
  • 25. HANSCH R., MENDEL R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259, 2009.
  • 26. PILON M., COHU C.M., RAVET K., ABDEL-GHANY S.E., GAYMARD F. Essential transition metal homeostasis in plants. Curr. Opin. Plant Biol. 12, 347 2009.
  • 27. ROTH U., VON ROEPENACK-LAHAYE E., CLEMENS S. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J. Experi. Bot. 57, 4003, 2006.
  • 28. CLEMENS S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88, 1707, 2006.
  • 29. LIN Y.F., ARTS M.G.M. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol. Life Sci. 69, 3187, 2012.
  • 30. XIAO H.H., YIN L.P., XU X.F., LI T.Z., HAN Z.H. The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann. Bot. 102, 881, 2008.
  • 31. CHAFFAI R., KOYAMA H. Chapter 1-Heavy Metal Tolerance in Arabidopsis thaliana. Adv. Bot. Res. 60, 1, 2011.
  • 32. ZHAO S.P., ZHANG Y.Z., YE X.Z., ZHANG Q., XIAO W.D. Responses to cadmium stress in two tomato genotypes differing in heavy metal accumulation. Turk. J. Bot. 39, 615, 2015.
  • 33. LUX A., MARTINKA M., VACULIK M., WHITE P.J. Root responses to cadmium in the rhizosphere. J. Experi. Bot. 62, 21, 2011.
  • 34. RAMESH S.A., SHIN R., EIDE D.J., SCHACHTMAN D.P. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 133, 126, 2003.
  • 35. WU Z.C., ZHAO X.H., SUN X.C., TAN Q.L., TANG Y.F., NIE Z.J., HU C.X. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere 119, 17, 2015.
  • 36. VAN DE MORTEL J.E., VILLANUEVA L.A., SCHAT H., KWEKKEBOOM J., COUGHLAN S., MOERLAND P.D., VAN THEMAAT E.V.L, KOORNNEEF M., AARTS M.G.M. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127, 2006.
  • 37. TALKE I.N., HANIKENNE M., KRAMER U. Zincdependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol. 16, 1, 2006.
  • 38. ASSUNÇÃO A.G.L., HERRERO E., LIN Y.F., HUETTEL B., TALUKDAR S., SMACZNIAK C., IMMINK R.G.H., VAN ELDIK M., FIERS M., SCHAT H. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Nat. Acad. Sci. 107, 10296, 2010.
  • 39. SHIMO H., ISHIMARU Y., AN G., YAMAKAWA T., NAKANISHI H., NISHIZAWA N.K. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice, J. Experi. Bot. 62, 5727, 2011.
  • 40. GONG Y.Q., LIU L.W. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). Plant Sci. 236, 313, 2015.
  • 41. ROGERS E.E., EIDE D.J., GUERINOT M.L. Altered selectivity in an Arabidopsis metal transporter. P. Natl. Acad. Sci., 12356, 2000.
  • 42. SHAO G.S., CHEN M.X., WANG D.Y., XU CH.M., MOU R.X., CAO ZH.Y., ZHANG X.F. Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology. Sci. China Life Sci. 51, 245, 2008.
  • 43. MATOVIĆ V., BUHA A., BULAT Z., ĐUKIĆ-ĆOSIĆ D. Cadmium toxicity revisited: Focus on oxidative stress induction and Interactions with zinc and magnesium. Arh. Hig. Rada Toksikol. 62, 65, 2011.
  • 44. GUERINOT M.L. The ZIP family of metal transporters. Biochim. Biophys. Acta. 1465, 190, 2000.
  • 45. DAL CORSO G., FARINATI S., MAISTRI S., FURINI A. How plants cope with cadmium: Staking all on metabolism and gene expression. J. Int. Plant Biol. 50, 1268, 2008.
  • 46. PEDAS P., YTTING C.K., FUGLSANG A.T., JAHN T.P., SCHJOERRING J.K., HUSTED S. Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol. 148, 455, 2008.
  • 47. ZOU J.H., YUE J.Y., ZHANG Z.G., JIANG W.S, LIU D.H. Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. agrogarum L. Acta. Biol. Cracov. Bot. 54, 129, 2012.
  • 48. WANG M., ZOU J.H., DUAN X.C., JIANG W.S., LIU D.H. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresource Tech. 98, 82, 2007.
  • 49. NELSON M.T. Interactions of divalent cations with single calcium channels from rat brain synaptosomes. J. Gen.Physiol. 87, 986, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-afef4595-7c6d-42e7-9d1a-2c7be8e57c44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.